DMT デシジョンツリーVer.1.3

使用マニュアル

2017年3月1日

データマインテック株式会社

注:本マニュアル記載内容は予告なく変更される場合があります。

DMT デシジョンツリーはデータマインテック株式会社の商標です。

- WPS, World Programming System は英国World Programming Limited の登録商標です。
 - SAS は米国 SAS Institute Inc. の登録商標です。
 - その他記載のソフトウェアは各社の登録商標または商標です。

目次

1. 概要	14
1.1 DMT デシジョンツリーの概要	14
1.2 デシジョンツリーの概要	14
1.3 応用分野	14
1.4 動作環境	14
1.5 実行モード	14
1.6 構成要素	14
1.7 バージョン 1.3 の新機能および追加変更点	15
1.8 無償提供評価版の制限	17
1.9 処理するデータ件数を無制限とするアップグレードについて(〔有償〕17
2. 導入方法	17
2.1 GUI 美行モートのセットアップ方法	17
2.1 GUI 美行モートのセットアッフ方法 21.1 ファイルのコピー	17
2.1 GUI 美行モートのセットアック方法 21.1 ファイルのコピー 2.1.2 ショートカットの作成	17
2.1 GUI 美行モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定	17
2.1 GUI 美打モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定 2.1.4 マクロカタログの更新方法	17
 2.1 GUI 美打モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定 2.1.4 マクロカタログの更新方法 2.1.5 有償版へのアップグレード方法 	17 17 17 18 21 21
 2.1 GUI 美打モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定 2.1.4 マクロカタログの更新方法 2.1.5 有償版へのアップグレード方法 2.2 SAS のコマンド実行モードのセットアップ方法 	17 17 17 18 18 12
 2.1 GUI 美打モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定 2.1.4 マクロカタログの更新方法 2.1.5 有償版へのアップグレード方法 2.2 SAS のコマンド実行モードのセットアップ方法 2.2.1 ファイルのコピー 	17 17 17 18 18 18
 2.1 GUI 美打モートのセットアック方法 2.1.1 ファイルのコピー 2.1.2 ショートカットの作成 2.1.3 初期設定 2.1.4 マクロカタログの更新方法 2.1.5 有償版へのアップグレード方法 2.2 SAS のコマンド実行モードのセットアップ方法 2.1 ファイルのコピー 2.2 初期設定 2.2 初期設定 	17 17 17 18 18 17 17 17 17 17 17 17 17
 2.1 GUI 美打モートのセットアック方法	17 17 17 18 18 17 17 17 17 17 17 17 17
 2.1 GUI 美打モートのセットアッフ方法	17 17 17 18 21 22 22 22 22
 2.1 GUI 美打モートのセットアック方法	17 17 17 17 17 17 17 17 17
 2.1 GUI 美打モートのセットアック方法	17 17 17 18 17 18 17 17 17 17 17 17
 2.1 GUI 美行モートのセットアック方法	17 17 17 17 17 17 17 17 17
 2.1 GUI 美行モートのセットアック方法	17 17 17 17 17 17 17 17 17

3.1.1 データ読込	
3.1.2 ラベル付与	
3.1.3 項目分析	
3.1.4 ツリーモデルの作成	
3.1.5 ツリーモデルの表示(ツリー分岐表)	
3.1.6 ツリーモデルの評価(ゲインチャート)ト)	
3.1.7 ツリーモデルの評価(比較プロット)	
3.1.8 ツリーノードの表示(ノード定義表)	
3.1.9 モデル予測値の付与(スコアリング)	41
3.1.10 収益チャート	
3.2 (例 2)施策実施効果の分析	46
3.2.1 データ読込	
3.2.2 ラベル付与	
3.2.3 項目分析	
3.2.4 ツリーモデルの作成	
3.2.5 アップリフトツリーモデルの表示(ツリー分岐表)	
3.2.6 ツリーモデルの評価(アップリフトチャート)	51
3.2.7 ツリーモデルの評価(比較プロット)	53
4. アルゴリズム	
41 ノード分割アルゴリズム	56
4.1.1 数値説明変数のカテゴライズ	
4.1.2 欠損が多い記明変数のカナコフイスについて	
4.1.3 ALC 基準による (特) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
4.1.4 2 万岐周沿旭朝田の沃正	
4.1.5 取りソート件数を満に9 分岐説明変数の迭状	
4.2 終端条件	58
4.2.1 ノード最小件数(mincnt=パラメータ)	
4.2.2 分割の最大階層(maxlvl=パラメータ)	
5. メニュー画面の構成	60
5.1 設定確認変更	60
511 直接入力を設す	61
5.1.1 世頃ハリと1 9	01
5.1.2 July 7 U J T J O 変更	01
5.1.6 マクロ保存ディレクトリ	
5.1.5 マクロ作成・更新	
5.1.6 サブディレクトリを開く	
5.2 オプション設定	
5.2.1 共通オプション	

5.2.2 各分析画面で有効なオプション	
5.3 パラメータのロード・保存	66
5.3.1 保存指定のロード	
5.3.2 現在の指定の保存	67
5.4 分析ディレクトリのファイル表示	67
5.5 各分析画面の処理の流れ	68
5.6 サンプルデータ	69
5.7 分析画面	
571 ①デ—夕坤出	60
5.7.1 ① 7 7 抽出	
5.7.3 ③モデル作成表示	
5.7.4 ④モデル検証	
5.7.5 ⑤モデル調整	
5.7.6 ⑥モデル適用	
6. 分析画面の構成	71
6.1(A)パラメータ指定領域	72
6.1.1 パラメ―タ(パラメ―タ名=)	
6.1.2 テキストボックス	
6.1.3 選択ボタン	72
6.1.4 既存のデータやモデルのロード画面	
6.1.5 リストボックス	
6.1.6 セットボタン	
6.1.7 追加ホタン	
0.1.8 リストホックスの上にソートホタン	
0.1.9 衣小ハダン 6110 ラジナボタンとチェックボックス	
0.1.10 フノオ ホランとフェックホックス	
6.2 (B) コードとログ表示領域	74
	74
6.3 (C) コマント領域	/4
6.3.1 実行	74
6.3.2 実行の中断	74
6.3.3 前 回表示	
6.3.4 戻る 6.25 】 カドウクリオット	
0.3.3 入川 相正 の リ ゼ ツ ト	
6.4 (D) 表示画面(ブラウザ)の制御領域	75

7. 表示画面(ブラウザ)の操作	75
7.1 画面の拡大・縮小およびスクロール	75
7.2 表示の拡大・縮小	75
7.3 過去の表示項目の再表示	76
7.4 表示画面の複数表示	
7.5 表示画面のクローズ	76
8. 分析画面 ①データ抽出	77
8.1 データ読み込み	77
8.1.1 概要 8.1.2 指定方法 8.1.3 イニシャルディレクトリ 9.1.4 亦物タ 亦物ティリ フェ フットについて	
8.2 データ加工	
8.2.1 概要	
8.2.2 指定方法	
8.3 ラベル付与	
8.3.1 概要 8.3.2 指定方法	81
8.4 検証確保(dmt_datasamp)	
8.4.1 概要 8.4.2 指定方法	
8.4.3 パラメータの詳細 8.4.4 データセット出力	
84.5 欠損値の取り扱い	
8.4.6 制限	
8.4.7 コマンド美行モートでの注意	
8.5 アータ官理	
8.5.1 概要	90 مم
9. 分析画面 ②項目分析	91
9.1 クロス分析(dmt_cross)	

9.1.1 概要	
9.1.2 指定方法	
9.1.3 パラメータの詳細	
9.1.4 クロスレベル2の既定の数値変数のカテゴライズ	
9.1.5 ツリーモデルとの連携機能	
9.1.6 コマンド実行モードで有効なパラメータの詳細	95
9.1.7 HTML 出力	96
9.1.8 実行例	96
9.1.9 層別分析の例	
9.1.10 データセット出力	
9.1.11 欠損値の取り扱い	103
9.1.12 制限	
9.1.13 コマンド実行モードでの注意	
9.2 結果表(dmt_crosstab)	
9.2.1 概要	
9.2.2 指定方法	
9.2.3 パラメータの詳細	
9.2.4 コマンド実行モードで有効なパラメータの詳細	
9.2.5 HTML 出力	
9.2.6 実行例	
9.2.7 コマンド実行モードでの注意	
9.3 結果図(dmt_crossplot)	
9.3.1 概要	
9.3.2 指定方法	
9.3.3 パラメータの詳細	
9.3.4 コマンド実行モードで有効なパラメータの詳細	
9.3.5 HTML 出力	
9.3.6 実行例	
9.3.7 コマンド実行モートでの注意	
9.4 結果管理	
9.4.1 概要	
9.4.2 操作方法	
10. 分析画面 ③モデル作成表示	
101 モデル作成(dmt tree)	116
1011 柳西	
10.1.1	
10.1.2 指正力法	
10.1.3 ハファーダの許袖	
10.1.4 文左快証モナルリハファーダ	122
10.1.5 コマント天1」て一トで有別なハファーメの計画	IZ3
10.1.0 天门] ற	123

10.1.7 層別分析の例	
10.1.8 データセット出力	
10.1.9 欠損値の取り扱い	
10.1.10 制限	
10.1.11 コマンド実行モードでの注意	
10.2 分岐表(dmt_treetab)	130
10.2.1 概要	
10.2.2 指定方法	
10.2.3 パラメ―タの詳細	
10.2.4 コマンド実行モードで有効なパラメータの詳細	
10.2.5 HTML 出力	
10.2.6 実行例	
10.2.7 データセット出力	
10.2.8 コマンド実行モードでの注意	
10.3 ノード表(dmt_nodetab)	136
10.3.1 概要	
10.3.2 指定方法	
10.3.3 パラメ―タの詳細	
10.3.4 コマンド実行モードで有効なパラメータの詳細	
10.3.5 HTML 出力	
10.3.6 実行例	
10.3.7 データセット出力	
10.3.8 コマンド実行モードでの注意	
10.4 モデルの管理	143
10.4.1 概要	
10.4.2 操作方法	
10.5 統計モデル(stat_model)	145
10.5.1 概要	
10.5.2 指定方法	
10.5.3 パラメータの詳細	
10.5.4 実行例	
10.5.5 データセット出力	
10.5.6 スコアリング用 SAS コード出力	
11. 分析画面 ④モデル検証	154
11.1 ゲイン・収益(dmt_gainchart)	154
11.1.1 概要	
11.1.2 指定方法	
11.1.3 パラメータの詳細	
11.1.4 収益チャートのパラメータの詳細	

11.1.5 GUI 実行モードで有効なパラメータの詳細	
11.1.6 コマンド実行モードで有効なパラメータの詳細	
11.1.7 HTML 出力	
11.1.8 実行例	
11.1.9 データセット出力	
11.1.10 欠損値の取り扱い	
11.1.11 制限	
11.1.12 コマンド実行モードでの注意	
11.2 比較プロット(dmt_compareplot)	
11.2.1 概要	
11.2.2 指定方法	
11.2.3 パラメータの詳細	
11.2.4 GUI 実行モードで有効なパラメータの詳細	
11.2.5 コマンド実行モードで有効なパラメータの詳細	
11.2.6 HTML 出力	
11.2.7 実行例	
11.2.8 データセット出力	
11.2.9 欠損値の取り扱い	
11.2.10 制限	
11.2.11 コマンド実行モートでの注意	
11.3 正誤表(dmt_correcttab)	171
11.3.1 概要	
11.3.2 指定方法	
11.3.3 パラメータの詳細	
11.3.4 GUI 実行モードで有効なパラメータの詳細	
11.3.5 コマンド実行モードで有効なパラメータの詳細	
11.3.6 HTML 出力	
11.3.7 実行例	
11.3.8 データセット出力	
11.3.1 欠損値の取り扱い	
11.3.2 コマント実行モートでの注意	
11.4 アップリフト図(dmt_upliftchart)	175
11.4.1 概要	
11.4.2 指定方法	
11.4.3 パラメ―タの詳細	
11.4.4 GUI 実行モードで有効なパラメータの詳細	
11.4.5 コマンド実行モードで有効なパラメータの詳細	
11.4.6 HTML 出力	
11.4.7 実行例	
11.4.8 データセット出力	
11.4.9 欠損値の取り扱い	
11.4.10 制限	

11.4.11 コマンド実行モードでの注意	
12. 分析画面 ⑤モデル調整	184
12.1 枝刈り(dmt_treecut)	
1211 概要	184
1212 指定方法	184
12.1.3 パラメータの詳細	
12.1.4 GUI 実行モードで有効なパラメータの詳細	
12.1.5 コマンド実行モードで有効なパラメータの詳細	
12.1.6 実行例	
12.1.7 画面出力	
12.1.8 データセット出力	
12.1.9 逆転ノードに関するレポート	
12.1.10 制限	
12.1.11 コマンド実行モードでの注意	
12.2 枝接ぎ(dmt_treeadd)	
12.2.1 概要	
12.2.2 指定方法	
12.2.3 パラメータの詳細	
12.2.4 GUI 実行モードで有効なパラメータの詳細	
12.2.5 コマンド実行モードで有効なパラメータの詳細	
12.2.6 実行例	
12.2.7 テータセット出力	
1228 制限	
1229 枝接さ後の注息 12210 コマンド実行モードでの注音	
123 予測值修正(dmt treescore outmodel=)	193
1231 概要	193
12.3.2 指定方法	
12.3.3 パラメータの詳細	
12.3.4 実行例	
12.3.5 データセット出力	
12.3.6 欠損値の取り扱い	
12.3.7 コマンド実行モードでの注意	
13. 分析画面 ⑥モデル適用	197
13.1 予測付与(dmt_treescore outscore=)	
13.1.1 概要	
13.1.2 指定方法	
13.1.3 パラメ―タの詳細	
13.1.4 実行例	

13.1.5 データセット出力	
13.1.6 欠損値の取り扱い	
13.1.7 コマンド実行モードでの注意	
13.2 コード保存(dmt_treescore outcode=)	200
13.2.1 概要	
13.2.2 指定方法	
13.2.3 パラメータの詳細	
13.2.4 出力 SAS コードの使用方法	
13.2.5 実行例	
13.2.6 コマンド実行モードでの注意	
13.3 コード管理	203
13.3.1 概要	
13.3.2 操作方法	
14. エラーへの対処方法など	205
14.1.1 SAS 言語マクロプロセサからのエラーメッセージ(コマンド実行モード)	
14.1.2 DMT_TREE アプリケーションからのエラーメッセージ(コマンド実行モード)	
14.1.3 強制終了後の処置(コマンド実行モード)	205
14.1.4 ライブラリの割り当てを解除する方法(コマンド実行モード)	
14.1.5 Microsoft .NET Framework からの エラーメッセージ(GUI 実行モード)	
14.1.6 GUI 実行メニューを2つ同時に起動できないというエラー(GUI 実行モード)	
14.1.7 突然 GUI 画面が終了する場合(GUI 実行モード)	
14.1.8 画面から入力データ、クロス分析結果、作成したモデルを選択するボタンで	選択画面が
開かなくなった場合(GUI 実行モード)	
15. 付録	208
15.1 用語の説明	208
1511 データ データヤット 変数 オブザベーション	208
15.1.2 数値タイプ、文字タイプ	
15.1.3 ターゲット変数、ターゲット	
15.1.4 説明変数	
15.1.5 モデル、ツリーモデル、ツリー	
15.1.6 ノード、親ノード、子ノード、ルートノード、中間ノード、終端ノード	
15.1.7 枝、枝刈り、枝接ぎ	
15.1.8 AIC 值	
15.1.9 エントロピー	
15.1.10 分割レベル、最大分割レベル	
15.1.11 ノード件数、最小ノード件数	
15.1.12 観測比率の標準誤差	
15.1.13 2つの観測比率の差の標準誤差	
15.1.14 2つの観測平均値の差の標準誤差	
15.1.15 スタージェスの公式	

15.1.16 サンプリング、層別サンプリング	
15.1.17 モデル作成用データとモデル検証用データ	
15.1.18 ゲインチャート	
15.1.19 AR 值	
15.1.20 比較プロット	
15.1.21 R2 乗値と誤差平均平方の平方根	
15.1.22 正誤表と正答率	
15.1.23 群内平方和と群間平方和	
15.1.24 ROC 曲線	
15.1.25 ROC エリア	
15.1.26 名義尺度·順序尺度·循環尺度	
15.1.27 線形回帰モデル	
15.1.28 線形ロジスティックモデル	
15.1.29 アップリフトモデル	
15.2 お問合せ先	215

Data Bring New Insight to Your Business

1. 概要

1.1 DMT デシジョンツリーの概要

DMT デシジョンツリーは、予測モデル自動作成手法の1つである「デシジョンツリー」(または「決定木」、「判別ツリー」などと呼ばれる)を SAS または WPS 上で実行するアプリケーションプログラムです。取り扱えるモデルの予測対象は、カテゴリカル変数の特定カテゴリ(クラス)の出現率、連続変数の平均値、さらに、施策実施が有効/無効な集団を特定するための実施群と非実施群間の応答差(「アップリフト」と呼ばれる)です。

DMT デシジョンツリーは、予測モデルの自動作成の他に、説明 変数の事前絞り込み機能、新しいデータに予測値を付与する機能、 モデルの性能を精度や収益の観点から評価するさまざまな図表 の作成機能、新しく出現したデータに基づくモデルの修正機能、 スコアコード出力機能などを備えています。

1.2 デシジョンツリーの概要

デシジョンツリーが自動的に作成される仕組みは単純です。まず、 全体を1つのノード(ルートノード)とみなして、どの説明変数 のどの値を用いてこのノードに含まれるオブザベーションを2 つのノードに分割すれば、"分割後の2つのノード間の目的変数 の分布の違いが最大となる"かを、すべての説明変数について計 算を行い、最も効果のある説明変数の値を分割条件に使って実際 の分割を行います。分割後の各ノードについても、同様の処理を 繰り返します。そして、各ノードは、"もはやこれ以上分割でき ない"と判断されると終端ノードとなります。

全ノードが終端ノードになったとき分害処理は終了し、決定木が 完成します。1回の分割が行われるたびに全ノード数が1個から 3個、3個から5個へ…といったように2つずつ増加し、最終的 には階層的に分割された1+2*(分割回数)個のノード数を持つ 決定木が生成されます。そのうち終端ノードの数は(分割回数 +1)個、中間ノード(ルートノードでも終端ノードでも無いノ ードのこと)の数は(分割回数-1)個となります。

なお、関心のある目的変数がカテゴリカル変数の場合は「分類木」 と呼ばれ、ターゲット変数の値そのものを予測する場合は「回帰 木」と呼ばれます。ターゲットが実施群(処理群)と非実施群(対 照群)間の応答差(アップリフト)の場合は、本アプリケーショ ンでは便宜的に「分類木アップリフト」、「回帰木アップリフト」 と呼ぶことにします。

1.3 応用分野

業種や業務分野に関わらず、予測モデルの自動構築と、構築した

モデルを用いて予測値の大きい対象を選別する(または除外する)という意思決定に広く利用することができます。また、実施施策の効果分析に用いることができます。

例えば、金融業においては顧客(企業・個人)に対する与信判断 (新規および途上与信)や優良顧客の選別と離反防止、特定の金 融商品推薦などに用いることができます。また、製造業において は生産工程上の歩留まり原因分析、建設業においては危険予知 (ヒヤリハット)分析、流通・販売業においては商品購買分析や 顧客維持分析、DM送付先の適正化など、業務上のデータ分析の 課題に幅広く適用できます。

1.4 動作環境

DMT デシジョンツリーVer.1.3 は、32 ビットまたは 64 ビット Windows 版 SAS¹バージョン 9.2 以降の Base SAS, SAS/GRAPH および SAS/STAT プロダクト、または、WPS 2 バ ージョン 3.1 以降の WPS Core、WPS Graphing および WPS Statistics プロダクトが稼働している計算機システム上で動作し ます。

1.5 実行モード

本バージョンではWindowsデスクトップから独自のGUI画面を 起動し、画面から入力データやパラメータを選択・指定しながら 分析を実行するモード (GUI 実行モード) と、SAS またはWPS を対話モード (SAS ディスプレイマネージャ、または WPS ワ ークベンチ) で起動し、プログラムエディタ画面に本アプリケー ションのマクロ呼び出しコマンドを入力し、実行するモード (ユ マンド実行モード) をサポートしています。

ただし、コマンド実行モードは SAS の SAS/Enterprise Guide 上 では動作しない点に注意。SAS Foundations (SAS Display Manager) モードで起動できる環境が必要です。

1.6 構成要素

後述の導入方法に記した方法で本アプリケーション (DMT デシ ジョンツリーV1.3.exe)を導入すると、以下の SAS マクロで書 かれた分析モジュール (マクロエントリ)を含むコンパイル済み SAS マクロカタログ (sasmacr.sas7bcat、または、 SASMACR.wpccat) が指定したフォルダー内に生成されます。

¹ SAS は米国 SAS Institute Inc. の登録商標です。

² WPS は英国 World Programming Ltd. の登録商標です。

Data Bring New Insight to Your Business

② DMT_CROSSPLOT ······ DMT_CROSS 実行結果をグラフ表示します

③ DMT_CROSSTAB …… DMT_CROSS 実行結果を表形式で 表示します.

④ DMT_DATASAMP...... データセットのオブザベーション を分析用サンプルデータセットと検証用テストデータセットに ランダムに振り分けます.

⑤ DMT_TREE ………… ツリーモデルを作成します.

⑥ DMT_CVTREE ………… ツリーモデルと交差検証法による 検証結果を表すモデル形式データセットを作成します.

⑧ DMT_NODETAB …… モデルの終端ノードをターゲット 出現率(または平均値)の大きさの順にならべた上で、各ノードの属性定義とノード別統計量およびノード累積統計量を表示します。

⑨ DMT_TREECUT …… モデルの中間ノードの下のノード を削除(枝刈り)します.

⑩ DMT_TREEADD ……… モデルの終端ノードに他のツリー
 モデルを接ぎ木(枝接ぎ)します.

① DMT_TREESCORE..... データにモデルを適用し、個々のオ ブザベーションに予測値を付与します(スコアリング)。また、 モデルの各ノードにおける該当件数とターゲット出現率を入力 データに即して再計算したモデル形式データセットを作成しま

す(検証モデルの作成、またはモデルの予測値の更新)。

12 DMT_GAINCHART … モデルのゲインチャート(CAP 図)、 ROC チャート、収益チャートを作成します.

DMT_COMPAREPLOT モデル予測値と実績値の比較プロットを作成します.

BMT_UPLIFTCHART… アップリフトモデル作成結果を図示します。

⑥ DMT_CORRECTTAB… 指定の予測確率をしきい値とした ターゲット/非ターゲットの予測件数と実績件数のクロス集計 表を作成し正答率を表示します。

なお、以上の他にいくつかのサブルーティンマクロが含まれます。

(GUI 実行機能)

DMT デシジョンツリーV1.3.exe には、SAS マクロカタログの 生成を行うと共に、メニュー画面からマクロのパラメータを指定 して実行する機能が含まれています。

この中には、マクロカタログに含まれるほとんどの分析機能に加 えて、統計モデル作成機能や、データ入力・加工・ラベル定義や データや結果ファイルの管理等の付加機能を備えています。 以下のような「メニュー」画面や各「分析指定」画面上でのマウ ス操作によるデータ分析が可能です。

「メニュー」 画面

「デシジョンツリーモデル作成画面」

	DMT_TREE 指定画面
	デシジョンツリーモデル作成
入力データ(*data=)	samp_data 表示 where条件
対照データ (control=)	
入力検証データ(test	data=)
対照検証データ(test	icontrol=)
交差検証 (testdata:	¢V) ○ Y ◉ N
ターゲット変数 (*y=)	flg ターゲット値(target=) 11
1M0H3638X (*x=)	sei nerrei jukyo kazoku kosei eakureki kinmusaki eyoshu shokushu DM
除外する説明変数 (dropx=)	GYOSHU 🗘
順序尺度説明変数(ordinatx=)
循環尺度説明変数((cyclicx=)
曇小ノード件数 (min	
最大分岐レベル (mag	(klp) 5 v Http://www.chalp.integeneration.integeneratio
(生成コード)	solution and the second s
libname data "G#L libname model "G# options nofmter: libname library (dat xrsei nerrei jukyo .dropx=GYOSHU,ou =Y)	Isere/EU/TM2/becktop/samp3/84deampdata"; Lover/EU/TM2/becktop/samp3/84deampdata"; ab; assampdata-reflectereft // Lassoku/Loosei gekardeki khminaski govoshu shokushu JM1 te kingaku Imodelimodel_tree,err; rate=II.lpsifptes2.max/bit5.laeguages_JAPANESEprecat
表示す [ログ]	るデータ件数の上限 10 v 又数5ベルの表示 v 値5ベルの表示 実行 結果 戻る
;注意: outmodel=_tr	∞ 推定したデータセットは存在します。 実行すると上書きされます: ^

(サンプル実行プログラム) DMT TREE VER1.3 SAMPLERUN.sas

DMT デシジョンツリーV1.3 をコマンド実行モードで実行する 場合のサンプルプログラムです。

1.7 バージョン 1.3 の新機能および追加変更点

[新マクロモジュール]

DMT_CVTREE

DMT_UPLIFTCHART

 施策実施効果(施策実施によるターゲット出現率または ターゲット平均値の実施しなかった場合に対する増加 量)の分析結果を図示します。施策実施群(処理群)、施 策非実施群(対照群)それぞれについて、施策実施効果

15 / 215

の大きい順(対照群においては逆順)にノードを並べた ときの累積増加応答(累積アップリフト)のプロット図 を作成します。

[機能追加変更マクロモジュール]

DMT_CROSS

…… (1) CONTROL= パラメータを追加

DATA= パラメータとCONTROL= パラメータを両方指 定することにより、実施群(DATA= 入力データセット) と対照群(CONTROL= 入力データセット)のターゲット 出現率(またはターゲット平均値)の差と各説明変数と の関連の大きさを分析します。

(2) ORDER=パラメータを追加

分析結果表における説明変数カテゴリの表示順を制御します。

(3) PCTF=, MEANF= および AICF=パラメータを追加 統計量の表示フォーマットを指定します。

(4) &_XSEL、&_XDEL マクロ変数を出力

目的変数と関連があると判定された説明変数項目をグロ ーバルマクロ変数 &_XSEL、関連が無いと判定された 説明変数項目を &_XDEL にそれぞれ出力します。これ らは同じ SAS セッションまたは WPS セッション内で、 続いてツリーモデルを作成するとき説明変数指定を容易 にするために用いることができます。

DMT_TREE

 …… (1) CONTROL= パラメータを追加
 DATA= パラメータと CONTROL= パラメータを両方指 定することにより、実施群(DATA= 入力データセット) と対照群(CONTROL= 入力データセット)のターゲット
 出現率(またはターゲット平均値)の差のばらつきを説 明変数ごとにAIC値で評価した値を分割基準としたアッ プリフトモデルを作成します。

DMT_CROSSPLOT

…… (1) ORDER=パラメータを追加

分析結果図における説明変数カテゴリの表示順を制御します。

(2) NOLABEL= パラメータを追加

変数ラベルと文字変数値に定義されているフォーマット の使用を中止し、変数名と文字変数値をそのまま表示し ます。

※ 現行の WPS ではグラフィック上に日本語表示を行うことができないため、日本語ラベルや日本語フォーマットを定義している場合は NOLABEL=Y を指定します。
 (3) PCTF=, MEANF= および AICF=パラメータを追加統計量の表示フォーマットを指定します。

(4) GRAPH_LANGUAGE= パラメータを追加 グラフ出力言語を制御します。 ※ SAS では GRAPH_LANGUAGE=JAPANESE に設定可能です。 WPS ではグラフ上に日本語表示ができないため、デフ ォルトの GRAPH_LANGUAGE=ENGLISH のままにし てください。

DMT_CROSSTAB

…… (1) ORDER=パラメータを追加

分析結果表における説明変数カテゴリの表示順を制御します。

(2) NOLABEL= パラメータを追加

変数ラベルと文字変数値に定義されているフォーマット の使用を中止し、変数名と文字変数値をそのまま表示し ます。

(3) PCTF=, MEANF= およびAICF=パラメータを追加 統計量の表示フォーマットを指定します。

DMT_DATASAMP

…… (1) TESTRATE= パラメータを追加 テスト用データの抽出率の方を指定できるようにしました。

DMT_TREECUT

 …… (1) TEST= パラメータを追加
 TEST= には、モデルをテストデータに当てはめたときのモデル形式データセットを指定します。MODEL と
 TEST の中間ノードを比較して、その子ノード間のターゲット値の大きさの順が逆転している中間ノードを自動 枝刈りしたモデルデータセットを作成します。

DMT_TREESCORE

…… (1) CONTROL= パラメータを追加
 DATA= パラメータと CONTROL= パラメータを両方指
 定することにより、アップリフトモデルを新たな実施デ
 ータ群(DATA=入力データセット)と対照データ群
 (CONTROL=入力データセット)に同時に当てはめた場
 合のモデル形式データセットを作成します。

DMT_TREETAB, DMT_NODETAB

 (1) DETAIL= パラメータを追加
 ノード統計量の表示項目数を制御します。DETAIL=Y と 指定すると表示項目が増えます。
 (2) PCTF=, MEANF= パラメータ
 統計量の表示フォーマットを指定します。

DMT_GAINCHART, DMT_COMPAREPLOT

…… (1) GROUPNUM= パラメータを追加
 モデル予測値の順に指定数のグループにデータを等件数
 分割した上で、各グループのモデル予測値と実際値に基づくプロット図を作成します。
 (2) GROUPVAR= パラメータを追加

指定のグループ変数のカテゴリをグループ単位としたモ デル予測値と実際値に基づくプロット図を作成します。 ※ DMT デシジョンツリーVer1.2 の GROUPNODE=Y パラメータは廃止しました。代わりに、
 GROUPVAR=_NODE を使用します。
 (3) AR_ROCF=, AMOUNTF=, R2F=, RMSEF= パラメ ータ
 統計量の表示フォーマットを指定します。
 (4) GRAPH_LANGUAGE= パラメータを追加 グラフ出力言語を制御します。

[入力データセットのデータセットオプション]

DATA=パラメータ、CONTROL=パラメータに指定する入力デー タセット名の後に、任意のデータセットオプションを指定可能に しました。

以下のマクロで利用可能です。

DMT_CROSS, DMT_DATASAMP, DMT_TREE, DMT_CVTREE, DMT_TREESCORE, DMT_GAINCHART, DMT_COMPAREPLOT, DMT_CORRECTTAB, DMT_UPLIFTCHART

1.8 無償提供評価版の制限

お客様が機能を評価することを目的として、無償提供する評価版 の DMT デシジョンツリーVer.1.3 は、マクロカタログの一部の マクロ (DMT_TREE、DMT_CVTREE) に対して、入力データ セット(data=データセットと control=データセット)のオブザベ ーション数に最大 2,000 件までの制限を与えています。(※ この 制限は where 条件指定とは無関係です。データセットに含まれ る全件数で判断しています。)

他のマクロ(DMT_CROSS, DMT_CROSSTAB, DMT_CROSSPLOT, DMT_DATASAMP, DMT_TREETAB, DMT_NODETAB, DMT_TREECUT, DMT_TREEADD, DMT_TREESCORE, DMT_GAINCHART, DMT_COMPAREPLOT, DMT_CORRECTTAB, DMT_UPLIFTCHART)には無償提供評価版でもこの制限はあり ません。

1.9 処理するデータ件数を無制限とするアップグレ ードについて(有償)

有償で提供するライセンスコードを入力すると、マクロカタログの中にあるすべてのマクロを入力データセットの件数に制限お が無いものにアップグレードできます。なお、ライセンスコード は使用中の SAS または WPS のサイト番号でのみ有効です。料 金、手続き等についてはお問い合わせください。

2. 導入方法

動作環境を確認の上、以下のステップに従って導入してくださ

い。

2.1 GUI 実行モードのセットアップ方法

2.1.1 ファイルのコピー

まず、弊社ウェブサイト(http://www.dataminetech.co.jp)から ダウンロードしたプロダクトファイル (DMT_TREEV1.3_buildyyyymmdd.zip)(yyyymmdd には年月 日が入ります)を任意の読み書き可能なユーザディレクトリにコ ピーし、そのディレクトリで解凍します。たたし、ディレクトリパ ス名はすべて半角英数字のみで指定可能でなければならない点 に注意してください。

例えば、ユーザディレクトリ "C:¥Users¥ユーザプロファイル名 "(ユーザプロファイル名の箇所はWindows ログインユーザ名) の中に DMT_TREEV1.3_buildyyyymmdd.zip ファイルをコピー してその場所に解凍します。"DMT_TREEV1.3_buildyyyymmdd" という名前のディレクトリが生成され、その中に DMT デシジョ ンツリーV1.3.exe という名前のファイルが入っていることを確 認します。

※ SAS ショートカット追記用_INITSTMT.txt,
 WPS ワークベンチ起動設定用_INITSTMT.txt,

DMT_TREEV1.3_SAMPLERUN.sas

の3ファイルはコマンド実行モード設定用のファイルです。

2.1.2 ショートカットの作成

"DMT デシジョンツリーV1.3.exe" のショートカットをデスクト ップに作成します。

ショートカットをダブルクリックして、以下の「メニュー」 画面 が表示されることを確認します。

Data Bring New Insight to Your Business

上記「メニュー」画面が表示されず、エラーが表示される場合は、 GUI 画面の起動に必要なバージョンの.NET Framework 4.x が Windows マシンにインストールされていないことが原因の場合 があります。マイクロソフト社のサイトから最新の .NET Framework 4.x を取得し、コンピュータにインストールした後、 再度「メニュー」画面を起動してください。

2.1.3 初期設定

				DMTデシジョ	コンツリ	一起動画面				
DMTデシ	νジョ	コンツリー	/er.	1.3 初期	設定	6 11				
①データ 抽出	⇒	②項目 分析	⇒	③モデル 作成表示	⇒	④モデル 検証	⇒	⑤モデル 調整	⇒	⑥モデル 適用
データ読込		クロス分析		モデル作成		ゲイン・収益		枝刈り		予测付与
データ加工		結果表		分岐表		比較プロット		枝接ぎ		コード保存
ラベル付与		結果図		ノード表		正誤表		予测储修正		コード管理
枝証確保		結果管理		モデル管理		アップリフト図				
データ管理				統計モデル			62017	Data Mine Tech Ltd.	(Build	2017/2/10)

はじめて「メニュー」画面を起動した場合は、 初期設定が必要 ボ タンをクリックして「DMT デシジョンツリー設定」画面を開きま す。

(1) 分析ディレクトリの設定

	設定画面	
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	まだ設定されていません	
データセットディレクトラ	まだ設定されていません	
HTMLディレクトリ	まだ設定されていません	
クロス分析結果ディレクトリ	まだ設定されていません	
ツリーモデルディレクトリ	まだ設定されていません	
統計モデルディレクトリ	まだ設定されていません	
スコアコードディレクトリ	まだ設定されていません	
ツリー表データディレクトリ	まだ設定されていません	
ノード表データディレクトリ	まだ設定されていません	
ゲイン図座標データディレクトリ	まだ設定されていません	
?ップリフト図座標データディレクトリ	まだ設定されていません	
比較図座標データディレクトリ	まだ設定されていません	
正誤表データディレクトリ	まだ設定されていません	
指定保存ディレクトリ	まだ設定されていません	
サンブルディレクトリ	まだ設定されていません	
exeファイル設定	まだ設定されていません	
マクロ保存ディレクトリ	まだ設定されていません	
使用するマクロカタログ	まだ設定されていません	
サンブルデータ作成	まだ作成できません	
リセット	この画面の全指定を初期値にリセットします	戻る

<u>分析デルクトリ設定</u>を押して、アプリケーションで使用するデ

ータ、モデルデータ、HTML 出力、パラメータなどを保存する ファイルの分析ルートディレクトリを指定します³。デフォルト ではデスクトップを初期ディレクトリとして **フォルダーの参照** 画面が開きます。

ユーザディレクトリの下のデスクトップ(**c:¥users¥**ユーザプロ ファイル名**¥desktop**)やドキュメント(**c:¥users¥**ユーザプロフ ァイル名**¥documents**)に分析ディレクトリを作成してもかまい ませんが、ここでは、ユーザディレクトリを選択しておいて、 新しいフォルダの作成(M) を押し、ユーザディレクトリの下に新しい フォルダを作成します。

新しいフォルダに半角文字で名前をつけます。

(**重要な注意**) フォルダのパス名もすべて半角文字でなければ なりません。全角文字が含まれる場合、エラーメッセージが出現 しますので、指定し直してください)

³ メニュー操作によりディレクトリ設定ができない場合は、代替手段として、 直接入力結束 を押し、ディレクトリパスをキーボード入力してから、 設定 を押します。

Data Bring New Insight to Your Business

CK を押して「DMT デシジョンツリー設定」 画面に戻ります。

(2) exe ファイル設定

	設定画面	2
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	C:#Users#DMT#samp_data	
データセットディレクトリ	C:WUsersWDMTWsamp_dataWdata	
HTMLディレクトリ	C:\Users\DMTVsamp_data\html	
クロス分析結果ディレクトリ	C-#Users#DMT#samp_data#cross	
ツリーモデルディレクトリ	C#Users#DMT¥samp_data¥treemodel	
統計モデルディレクトリ	C#Users#DMT#samp_data#statmodel	
スコアコードディレクトリ	C:¥Users¥DMT¥samp_data¥scorecode	
ツリー表データディレクトリ	C:¥Users¥DMT¥samp_data¥treetab_data	
ノード表データディレクトリ	C:¥Users¥DMT¥samp_data¥nodetab_data	
ゲイン図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥øain_data	
アップリフト図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥uplift_data	
比較図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥compare_data	
正誤表データディレクトリ	C:¥Users¥DMT¥samp_data¥correct_data	
指定保存ディレクトリ	C:¥Users¥DMT¥samp_data¥parmset	
サンブルディレクトリ	C:¥Users¥DMT¥samp_data¥sample	
exeファイル設定	まだ設定されていません	
マクロ保存ディレクトリ が	まだ設定されていません	
使用するマクロカタログ	まだ設定されていません	
サンプルデータ作成	まだ作成できません	
U1291	この画面の全指定を初期値にリセットします	戻る

次に、 exeファイル設定 ボタンを押して、導入されてい る SAS またはWPSの実行ファイル(sas. exe または wps. exe) のパスを指定します。ファイル選択画面が C:¥Program Files デ ィレクトリを初期ディレクトリとして開きます。

通常、sas.exe ファイルは、C:¥ Program Files¥SASHome¥SASFoundation¥9.x¥sas.exe (ここで、9.x は SAS バージョンを表します) にあり、wps.exe は、C:¥Program Files¥World Programming WPS 3¥bin¥wps.exe にあります。フ ァイル選択画面のディレクトリパスを辿って指定します。ただし、 インストール時の設定によって、実際の exe ファイルのパスは 異なる場合もあります。

指定後、実行ファイルのバージョンチェックが行われ、完了する と exeファイル設定 ボタンの表示が exeファイル変更 に変化し、マクロ保存ディレクトリ ボ タンが有効になります。

	設定画面	×
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	C:#Users#DMT#samp_data	
データセットディレクトリ	C¥Users¥DMT¥samp_data¥data	
HTMLディレクトリ	C#Users#DMT#samp_data#html	
クロス分析結果ディレクトリ	C.¥Users¥DMT¥samp_data¥cross	
ツリーモデルディレクトリ	C.¥Users¥DMT¥samp_data¥treemodel	
統計モデルディレクトリ	C#Users#DMT#samp_data#statmodel	
スコアコードディレクトリ	C#Users#DMT#samp_data#scorecode	
ツリー表データディレクトリ	C#Users#DMT#samp_data#treetab_data	
ノード表データディレクトリ	C#Users#DMT#samp_data#nodetab_data	
ゲイン図座標データディレクトリ	C#Users#DMT#samp_data¥gain_data	
アッブリフト図座標データディレクトリ	C#Users#DMT#samp_data¥uplift_data	
比較図座標データディレクトリ	C#Users#DMT#samp_data#compare_data	
正誤表データディレクトリ	C#Users#DMT#samp_data#correct_data	
指定保存ディレクトリ	C.¥Users¥DMT¥samp_data¥parmset	
サンブルディレクトリ	C.¥Users¥DMT¥samp_data¥sample	
exeファイル設定	C#Program Files#World Programming WPS 3#bin#wps.exe	
マクロ保存ディレクトリ	まだ設定されていません	
使用するマクロカタロな	まだ設定されていません	
サンブルデータ作成	samp_data.csv. test_data.csv. samp_label_fmt.csv 等を作成できます	
1140.1		52
リゼット	この画面の全指定を初期他にリセットします	Æ≎

(3) マクロカタログファイル保存ディレクトリ設定

マカロ保存ディレクトリ ボタンを押して、**DMT デシジョンツリ** ーマクロカタログ を保存するディレクトリを、すべて半角英数 字のみのパス名で指定します。

ディレクトリ選択画面が、C:¥users¥ユーザプロファイル名 を 初期ディレクトリとして開きます。

ここでは、 C:¥users¥ ユーザプロファイル名 ¥DMT_TREEV1.3_buildyyyymmdd ディレクトリを保存先ディ レクトリに設定します。

(4) マクロカタログの作成

Data Bring New Insight to Your Business

	設定画面	×
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	C#Users#DMT#samp_data	
データセットディレクトリ	C.¥Users¥DMT¥samp_data¥data	
HTMLディレクトリ	C#Users#DMT#samp_data#html	
クロス分析結果ディレクトリ	C:#Users#DMTVsamp_dataVcross	
ツリーモデルディレクトリ	C:¥Users¥DMT¥samp_data¥treemodel	
統計モデルディレクトリ	C:#Users#DMT¥samp_data¥statmodel	
スコアコードディレクトリ	C:#Users#DMT¥samp_data¥scorecode	
ツリー表データディレクトリ	C:¥Users¥DMT¥samp_data¥treetab_data	
ノード表データディレクトリ	C:¥Users¥DMT¥samp_data¥nodetab_data	
ゲイン図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥gain_data	
アップリフト図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥uplift_data	
比較図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥compare_data	
正誤表データディレクトリ	C:¥Users¥DMT¥samp_data¥correct_data	
指定保存ディレクトリ	C:¥Users¥DMT¥samp_data¥parmset	
サンブルディレクトリ	C:¥Users¥DMT¥samp_data¥sample	
exeファイル設定	C#Program Files#World Programming WPS 3#bin#wps.exe	
マクロ保存ディレクトリ	C#Users#DMT#DMT_TREEV1.3_build20170210	nho/act Tar
使用するマクロカタログ	マクロ作成・更新ポタンを押してください	
サンブルデータ作成	samp_data.csv, test_data.csv, samp_label_fmt.csv 等を作成できます	~
ライセンスコード	※有償版はライセンスコードを入力してから「マクロ作成・更新」:	ボタンを押してください
Utok	この画面の全指定を初期値にリセットします	戻る

次に マカロ作成・更新 ボタンを押します。

マクロカタログを作成するかどうかの確認画面が表示されます。

	確認
? s c g	ASMACR.wpccat を ¥Users¥DMT¥DMT_TREEV1.3_build20170210 ディレクトリに作成しま か?
	(はい(Y) ひしいえ(N)
(‡U)(Y)	を押します。

マクロカタログ作成中...のメッセージが出現します。

しばらくすると、終了のメッセージが表示されます。(※ マクロ カタログの生成にはコンピュータ環境によっては、時間がかかる 場合があります。)

	設定画面	
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	C#Users#DMT#samp_data	
データセットディレクトリ	C#Users#DMT#samp_data#data	
HTMLディレクトリ	C.¥Users¥DMT¥samp_data¥html	
クロス分析結果ディレクトリ	C-¥Users¥DMT¥samp_data¥cross	
ツリーモデルディレクトリ	C.¥Users¥DMT¥samp_data¥treemodel	
統計モデルディレクトリ	C#Users#DMT#samp_data#statmodel	
スコアコードディレクトリ	C#Users#DMT#samp_data#scorecode	
ツリー表データディレクトリ	C¥Users¥DMT¥samp_data¥treetab_data	
ノード表データディレクトリ	C#Users#DMT#samp_data#nodetab_data	
ゲイン図座標データディレクトリ	C¥Users¥DMT¥samp_data¥gain_data	
アップリフト図座標データディレクトリ	C¥Users¥DMT¥samp_data¥uplift_data	
比較図座標データディレクトリ	C¥Users¥DMT¥samp_data¥compare_data	
正誤表データディレクトリ	C#Users#DMT#samp_data#correct_data	
指定保存ディレクトリ	C¥Users¥DMT¥samp_data¥parmset	
サンブルディレクトリ	C:¥Users¥DMT¥samp_data¥sample	
exeファイル設定	C#Program Files#World Programming WPS 3#bin#wps.exe	
マクロ保存ディレクトリ	C-¥Users¥DMT¥DMT_TREEV1.3_build20170210	nho/ach Th
使用するマクロカタログ	C#Users#DMT#DMT_TREEV1.3_build20170210#SASMACR.wpccat	イクロTEDX。 更新
サンブルデータ作成	samp_datacsv, test_datacsv, samp_label_fmtcsv 等を作成できます	
ライセンスコード	※有償版はライセンスコードを入力してから「マクロ作成・更	新」ボタンを押してください
リセット	この画面の全指定を初期値にリセットします	戻る

以上でマクロカタログの作成は終了です。

(5) サンプルデータの作成

サンブルデータ作成中

最後に、 サンプルデータの作成 を押し、サンプルデータ (CSV 形式、および、WPS データセット形式または SAS デー タセット形式)、サンプルラベルフォーマット定義 (CSV 形式と SAS コード形式)を SAMPLE ディレクトリに作成しておきます。

確認	×
サンプルデータゼット samp_data.csv, test_data.csv, test_data.wpd, ラ ベル定義ファイル samp_label_fmt.csv, samp_label_fmt.sas を C:¥Users¥DMT¥samp_data¥sample に作成しますか?	
(はい(Y) 1/2 いいえ(N)	
はい(Y) を押します。	
お知らせ ×	

サンプルデータ作成中のメッセージ画面が出現し、作成が終了す ると画面は自動的に閉じます。

20 / 215

Data Bring New Insight to Your Business

	設定画面	
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ設定	C:#Users#DMT#samp_data	
データセットディレクトリ	C:#Users#DMT#samp_dataWdata	
HTMLディレクトリ	C:#Users#DMT#samp_data#html	
クロス分析結果ディレクトリ	C:#Users#DMT¥samp_data¥cross	
ツリーモデルディレクトリ	C:#Users#DMT¥samp_data¥treemodel	
統計モデルディレクトリ	C:#Users#DMT#samp_data#statmodel	
スコアコードディレクトリ	C:¥Users¥DMT¥samp_data¥scorecode	
ツリー表データディレクトリ	C:#Users#DMT#samp_data#treetab_data	
ノード表データディレクトリ	C:¥Users¥DMT¥samp_data¥nodetab_data	
ゲイン図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥∉ain_data	
アップリフト図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥uplift_data	
比較図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥compare_data	
正誤表データディレクトリ	C:#Users#DMT¥samp_data¥correct_data	
指定保存ディレクトリ	C:#Users#DMT#samp_data#parmset	
サンブルディレクトリ	C:¥Users¥DMT¥samp_data¥sample	
exeファイル設定	C#Program Files#World Programming WPS 3#bin#wps.exe	
マクロ保存ディレクトリ	C#Users#DMT#DMT_TREEV1.3_build20170210	つわり/ケィア・東部
使用するマクロカタログ	C#Users#DMT#DMT_TREEV1.3_build20170210#SASMACR.wpccat	A CIT ED/L FE/M
サンブルデータ作成	samp_data.csv, test_data.csv, samp_label_fmt.csv 等は存在します	
ライセンスコード	※有償版はライセンスコードを入力してから「マクロ作成・	更新」ボタンを押してください
9129F	この画面の全指定を初期値にリセットします	چة 🖓
以上で、 GUI 実	行モードの初期設定は終了です。	
戻る ボタンを	·押して、「メニュー」 画面に戻りま	す。

※ 途中で問題が起きた場合は、 <u>リセット</u> を押して設 定を最初からやり直してください。

「メニュー」画面が各分析画面を呼び出す画面項目が選択できる 状態になっていることを確認すると、GUI 実行モードの初期設 定は完了です。

2.1.4 マクロカタログの更新方法

マクロカタログまたは GUI 実行アプリケーションの修正版がリ リースされた場合は、"DMT デシジョンツリーV1.3.exe" の最新 ビルドを含む DMT デシジョンツリーV1.3.zip が、弊社インター ネットウェブサイト (http://www.dataminetech.co.jp) からダウ ンロード可能になります。そのときは、最新版をダウンロード、 解凍し、設定画面から、既存の分析ディレクトリ設定、exe ファ イル設定、マクロ保存ディレクトリ設定を行った上で、 マロ(Hatr.WHM) ボタンを押して、マクロカタログを最新版に更新し てください。

2.1.5 有償版へのアップグレード方法

処理するオブザベーション件数に制限のないDMTデシジョンツ

リーV1.3 マクロカタログを生成または更新するには、設定画面 の右下にある ライセンスコード 欄にライセンスコード(有償) を入力してから マカロドはで類 ボタンを押してください。

	設定画面	×
直接入力を許す	DMTデシジョンツリー設定	
分析ディレクトリ変更	C#Users#DMT#samp_data	
データセットディレクトリ	C#Users#DMT#samp_data#data	
HTMLディレクトリ	C#Users#DMT¥samp_data¥html	開入
クロス分析結果ディレクトリ	C:¥Users¥DMT¥samp_data¥cross	
ツリーモデルディレクトリ	C#Users#DMT#samp_data#treemodel	7
統計モデルディレクトリ	C.¥Users¥DMT¥samp_data¥statmodel	7
スコアコードディレクトリ	C#Users#DMT#samp_data#scorecode	
ツリー表データディレクトリ	C#Users#DMT#samp_data#treetab_data	
ノード表データディレクトリ	C#Users#DMT¥samp_data¥nodetab_data	
ゲイン図座標データディレクトリ	C#Users#DMT¥samp_data¥gain_data	
アップリフト図座標データディレクトリ	C#Users#DMT¥samp_data¥uplift_data	
比較図座標データディレクトリ	C#Users#DMT¥samp_data¥compare_data	
正誤表データディレクトリ	C#Users#DMT¥samp_data¥correct_data	
指定保存ディレクトリ	C#Users#DMT#samp_data#parmset	開入
サンプルディレクトリ	C#Users#DMT#samp_data#sample	開く
exeファイル変更	C#Program Files#World Programming WPS 3#bin#wps.exe	
マクロ保存ディレクトリ	C#Users#DMT#DMT_TREEV1.3_build20170210	ert. The
使用するマクロカタログ	C#Users#DMT#DMT_TREEV1.3_build20170210#SASMACR.wpccat	55%、更新
サンプルデータ作成	samp_data.csv, test_data.csv, samp_label_fmt.csv 等は存在します	~
ライセンスコード	*************************************	押してください
リセット	この画面の全指定を初期値にリセットします	戻る

マクロ作成・更新完了メッセージが以下のように表示されること を確認してください。

お知らせ	×
C:¥Users¥DMT¥DMT_TREEV1.3_build20170210¥SASMACR.wpcc at を WPSサイト番号 **** で有効なデータサイズ制限の無いマクロカタログに更 新しました	
OK	

ここから分析に進むこともできますが、 区 ボタンを押して一 旦**「メニュー」**画面を終了し、コマンド実行モードのセットアップ を行っておきましょう。

なお、メニュー画面を閉じて DMT デシジョンツリーを終了する 際には、現在の設定を自動保存するかどうかがシステムから質問 されます。

「はい」と答えると、現在の設定情報や分析画面のパラメータ指 定全体が _LASTSAVE_ という名前で分析ディレクトリの parmset サブディレクトリ内に保存されます。(既存のものが存 在する場合は上書き)

「いいえ」と答えると、分析ディレクトリに保存されている _LASTSAVE_ が維持されます。

ただし、「はい」と答える場合でも「いいえ」と答える場合でも、 次回メニュー画面を起動したときは、前回の終了時点のパラメー タ指定全体が残っています。_LASTSAVE_の状態に戻すには、 「智慧" を押して _LASTSAVE_ を選択します。 (※ パラメータのロード・保存 の項を参照) 2 導入方法 2.2 SAS のコマンド実行モードのセットアップ方法

2.2 SAS のコマンド実行モードのセットアップ方法

SAS ディスプレーマネージャのプログラムエディタに、マクロ コマンドを入力しサブミットする方式で利用するモード(コマン ド実行モード)の設定方法は以下のとおりです。

2.2.1 ファイルのコピー

設定に使用するモジュールは、GUI 実行モードの設定画面で作成した sasmacr.sas7bcat、SAS ショートカット追記用 _INITSTMT.txt 、 そ し て DMT_TREE_VER1.3_SAMPLERUN.sasの3つです。

sasmacr.sas7bcat は GUI 実行モード用と同じものをコマンド 実行用に SASUSER ディレクトリ (一般的には、c:¥users¥ユー ザプロファイル名¥documents¥My SAS File¥9.x) に複製して用 います。

ただし、SASUSER ライブラリの中に既存の sasmacr.sas7bcat ファイルが存在していた場合、置き換えるか、追加するかの選択 があり、SASUSER ディレクトリの内容をまず確認します。

Windows エクスプローラで確認を行った結果、 sasmacr.sas7bcat が存在しない、またはDMT デシジョンツリ ーの旧バージョンが同じ名前で存在する場合は、新しい sasmacr.sas7bcat をコピーし既存のものがあれば上書きします。

く参考>

SASUSERディレクトリ内に既に同じ名前のSASマクロカタロ グが存在し、内容は残して、追加したい場合は、ファイル全体を 置き換えてしまわないように、SASを立ち上げてから、プログ ラム編集画面に以下のコマンドを入力しサブミットしてくださ い。(このやり方により、新しい名前のマクロカタログエンテテ ィは追加され、既存と同じ名前のマクロは更新されます。)

[C:¥users¥ ユ ー ザ プ ロ フ ァ イ ル 名 ¥DMT_TREEV1.3_buildyyymmdd ディレクトリに保存してある sasmacr.sas7bcat を SASUSER ディレクトリにコピー(新規は追 加、既存は置換)する場合のコマンド]

libname in " C:¥Users¥ユーザプロファイル名 ¥DMT_TREEV1.3_buildyyyymmdd ¥DMT_TREEV1.3"; proc catalog cat=in.sasmacr; copy out=sasuser.sasmacr; run;quit;

ここでユーザプロファイル名の個所にはWindowsのログインユ

ーザ名としてください。

2.2.2 初期設定

sasmacr.sas7bcatのSASUSERディレクトリへのコピーに続い て、コンパイル済みマクロカタログをSASで利用可能にするた め、SAS 起動ショートカットにオプションを設定します。 SAS 起動ショートカットを右クリックしてプロパティを開きま

プロパティ画面のリンク先のテキストの末尾にカーソルを移動 しておき、SAS ショートカット追記用_INITSTMT.txt ファイルを 開きます。表示されるテキストをコピーし、リンク先のテキスト の末尾に貼り付けます。

T

INITSTMT.txt - メモ帳 たイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H) -initstmt 'libname mstore "%sysfunc(pathname(sasuser))"; opti

(注意) 先頭のスペース1個も忘れずに複写してください。

Data Bring New Insight to Your Business

TUNK .	Dyト 互換性 セキュリティ 詳細
Sas s	5AS 9.4 (日本語)
種類:	アプリケーション
場所:	9.4
リンク先(T):	suser))"; options mstored sasmstore=mstore;
作業フォルダー (S):	%USERPROFILE%
ショートカット キー(K):	なし
実行時の 大きさ(R);	通常のウィンドウ >
א∕א⊑	
ファイルの場所	所を開く(F) アイコンの変更(C) 詳細設定(D)
	OK キャンセル 適用(A)
F (m)	
on ca ht	
全般 54-17.	リット 互換性 ゼキュリティ 詳細
SAS	
	5AS 9.4 (日本語)
· · · · · · · · · · · · · · · · · · ·	5AS 9.4 (日本語) アプリケーション
· · · · · · · · · · · · · · · · · · ·	5AS 9.4 (日本語) アプリケーション 9.4
全類: 場所: リンク先(T): 	SAS 9.4 (日本語) アプリケーション 9.4 [Juser])"; options mstored sasmstore=mstore;"
建築: 場所: リンク先(T): 作業フォルダー (S):	SAS 9.4 (日本語) アプリケーション 9.4 [suser])"; options mstored sasmstore-mstore; ¹ %USERPROFILE%
福頭: 場所: リンク先(T): 作業フォルダー (S): ショートカット キー(K):	SAS 9.4 (日本語) アプリケーション 9.4 [auser))'; options mstored sasmstore=mstore;' %USERPROFILE% なし
種類: 場所: リンク先(T): 作業フォルダー (S): ショートカット キー(K): 実行時の 大きさ(R):	SAS 9.4 (日本語) アプリケーション 9.4 [JUSER)7; options mstored sasmstore-mstore; %USERPROFILE% なし 遠応のウィンドク v
種類: 場所: リンク先(T): 作業フォルダー (5): シュートカット キー(K): 実行時の 大きさ(R): コメント(O):	SAS 9.4 (日本語) アプリケーション 9.4 [JUSER)7; options mstored sasmstore=mstore; %USERPROFILE% なし 遠常のクィンドク v
建築: 電気: 場所: リンク先(T): 「株美フォルダー (S): ショートカット キー(K): 実行時の 大きさ(R): コメント(O): ファイルの場所	SAS 9.4 (日本語) アプリケーション 9.4 [JUSER)?; options mstored sasmstore-mstore; %USERPROFILE% なし 通常のウィンドウ ・ が能験((F) アイコンの変更(C) 詳細設定(D)
程類: 場所: リンク先(T): 作業フォルダー (S): ショートカット キー(K): 東(行時の 大きさ(R): コメント(O): ファイルの場界	SAS 9.4 (日本語) アプリケーション 9.4 [JUSER))'; options mstored sasmstore-mstore;' %USERPROFILE% なし 遠常のウィンドウ ・ 「新聞設定(D)」 詳細設定(D)
種類: 場所: リンク先(下): 「作業フォルダー (S): ショートカット キー(K): 実行時の 大きさ(R): コメント(O): ファイルの場界	SAS 9.4 (日本語) アプリケーション 9.4 [JUSET))'; options mstored sasmstore-mstore;' %USERPROFILE% なし 通常のウィンドウ ・ 所を語く(F) アイコンの変更(C) 詳細設定(D)
種類: 場所: リンク先(T): (5): シュートカット キー(K): メコートカット キー(K): スオートのト スオさ(R): コメント(O): ファイルの場界	SAS 9.4 (日本語) アプリケーション 9.4 [JUSET))'; options mstored sasmstore-mstore;' %USERPROFILE% なし 運業のウィンドウ ・ 所を擱ぐ(F) アイコンの変更(C) 詳細設定(D)
種類: 場所: リンク先(T): (5): シュートカット キー(K): 実行時の 大きさ(R): コメント(O): ファイルの場界	SAS 9.4 (日本語) アプリケーション 9.4 [JUSER])'; options mstored sasmstore-mstore;' %USERPROFILE% なし 運業のウィンドク v 「新語版((F)」アイコンの変更(C)」詳細設定(D)

貼り付けた後、OK を押してショートカットのプロパティを閉じ て、一旦 SAS を終了します。

次に、SAS 起動ショートカットをダブルクリックして SAS ディ スプレイマネージャを起動します。

起動時のログ画面に、以下のようなメッセージが表示されている ことを確認します。

NOTE: ライブラリ参照名 MSTORE は SASUSER と同じ物理ライブラリを参照しています。 NOTE: ライブラリ参照名 MSTORE を次のように割り当てました。 エンジン、V9 物理名: G.¥Users¥DMT¥Documents¥Wy SAS Files¥9.4

プログラム編集画面に、以下のように入力してサブミットしてく ださい。

%dmt_tree(help)

ログに DMT_TREE マクロの指定方法が表示されることを確認 してください。

2.2.1 サンプルプログラムの実行

次 に サ ン プ ル プ ロ グ ラ ム DMT_TREE_VER1.3_SAMPLERUN.sas をプログラム編集画 面にコピーして、サブミットしてください。エラーなく実行でき ることをログと HTML 出力で確認してください。

実行内容については、次の「実行例」でほぼ同じ内容を説明して います。

2.3 WPS のコマンド実行モードセットアップ方法

WPS ワークベンチのプログラムエディタビューに、マクロコマ ンドを入力しサブミットする方式で利用するモード(コマンド実 行モード)の設定方法を説明します。

2.3.1 ファイルのコピー

設定に使用するファイルは GUI 実行モードの設定画面で作成した SASMACR.wpccat、WPS ワークベンチ起動設定用_INITSTMT.txt 、 そ し て DMT_TREE_VER1.3_SAMPLERUN.sas の3つです。

SASMACR.wpccat は GUI 実行モード用と同じものをコマンド 実行用に SASUSER ディレクトリ (一般的には、c:¥users¥ユー ザプロファイル名¥documents¥My WPS File) に複製して用いま す。

ただし、SASUSER ライブラリの中に既存の SASMACR.wpccat ファイルが存在していた場合、置き換えるか、追加するかの選択 がありますので、SASUSER ディレクトリの内容をまず、確認 します。

Windows エクスプローラで確認を行った結果、 SASMACR.wpccatが存在しない、またはDMT デシジョンツリ ーの旧バージョンが同じ名前で存在する場合は、新しい SASMACR.wpccat をコピーし既存のものがあれば上書きしま す。

く参考>

SASUSERディレクトリ内に既に同じ名前のSASマクロカタロ グが存在し、内容は残して、追加したい場合は、ファイル全体を 置き換えてしまわないように、WPSを立ち上げてから、エディ タビューに以下のコマンドを入力しサブミットしてください。 (このやり方により、新しい名前のマクロカタログエンテティは 追加され、既存と同じ名前のマクロは更新されます。)

[C:¥users¥ ユ ー ザ プ ロ フ ァ イ ル 名 ¥DMT_TREEV1.3_buildyyyymmdd ディレクトリに保存してある SASMACR.wpccat を SASUSER ディレクトリにコピー(新規は追 Data Bring New Insight to Your Business

加、既存は置換)する場合のコマンド]

libname in " C:¥Users¥ユーザプロファイル名 ¥DMT_TREEV1.3_buildyyyymmdd ¥DMT_TREEV1.3"; proc catalog cat=in.sasmacr; copy out=sasuser.sasmacr; run;quit;

ここでユーザプロファイル名の個所にはWindowsのログインユ ーザ名としてください。

2.3.2 初期設定

SASMACR.wpccat の SASUSER ディレクトリへのコピーに続いて、マクロモジュールをWPS ワークベンチで利用可能にするための設定を行います。

WPS ワークベンチの WPS サーバーエクスプローラービューの ローカルサーバー を右クリックし、プロパティを選択します。

プロパティ画面の左領域の 起動 を展開し、システムオプション を選択します。

2	プロパ	ティ: ローカルサーバー	- • ×		
7ብ/ዓ入力	システムオプション	,	⇔ ⇒ ⇒ ▼		
WPS ソフトウェア情報 WPS ライセンス情報	システム起動オプション:				
システムオプション	オプション	値	追加		
マクロ変数 環境 1 起動 <u>システムオプショ</u> : 環境変数	ENCODING	shift-jis	24. 383 第11年		
			デフォルトの復元(T) 適用(L)		
?			OK キャンセル		

追加... を押します。

۲	起動オプション	×
名前:	INITSTMT 選択	
値:	libname mstore "%sysfunc(pathname(sasuser))"; options mstored sasmstore=mstore;	
	0K N +p>tzl	
	4	

起動オプション画面が表示されます。

名前:にはINITSTMT を選択し、値:にはWPS ワークベン チ起動設定用_INITSTMT.txt ファイルの内容をコピーペースト して **OK**を押します。

(WPSワークベンチ起動設定用_INITSTMT.txtの内容をコピーして値に貼り付ける)

□ INITSTMT.sas - メモ帳 - □ ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H) |ibname mstore "%sysfunc(pathname(sasuser))"; options mstored sasmstore=mstore;

システム起動オプションに INITSTMT が追加されたことを確認 してから OK を押します。

	サーバー再起動の確認			
?	これらの変更はサーバーが再起動するまで有効にはなりません。 再起動しますか?			
	はい(Y) しいえ(N)			

オプションを有効にするため、再起動します。 その後、一旦WPS ワークベンチをを終了します。

WPS ワークベンチを起動します。

起動時のログ画面に、以下のようなメッセージが表示されている ことを確認します。

NOTE: Library mstore assigned as follows: Engine: WPD Physical Name: G:¥Users¥DMT¥Documents¥My WPS Files

プログラム編集画面に、以下のように入力してサブミットしてく ださい。

%dmt_tree(help)

ログに DMT_TREE マクロの指定方法が表示されることを確認 します。

2.3.3 サンプルプログラムの実行

次にサンプルプログラム DMT_TREE_VER1.3_SAMPLERUN.sas をプログラム編集画 面にコピーして、サブミットしてください。エラーなく実行でき ることをログと HTML 出力で確認してください。 実行内容については、次の「実行例」でほぼ同じ内容を説明して

います。

3. 実行例

DMT_TREEV1.3_SAMPLERUN.sas プログラムは、それぞれ 2,000 件のオブザベーション数、12 項目の変数を持つサンプル データ(samp_data)とテストデータ(test_data)を作成し、これら のデータを用いた**DMT**デシジョンツリーアプリケーションの使 い方を例示します。

samp	data.	test	data	項	
	_ /				

#	項日	ラベル	値	値のラベル
1	sei	性別	1	男性
		1.1.1.1	2	女性
2	nenrei	年齢	(数値)	
3	iukvo	住居区分	1	持家(自己所有)
	5 7		2	持家(家族所有)
			3	賃貸マンション
			4	借家
			5	アパート
			6	寮
			7	社宅
			欠損	不明
4	kazoku_kosei	家族構成	1	独身同居家族あり
			2	独身単身
			3	既婚子供あり
			4	既婚子供なし
			5	独身子供あり
			欠損	不明
5	gakureki	学歴	1	中学
			2	高校
			3	朝門学校
			4	大学
			5	大学院
			欠損	不明
6	kinmusaki	勤務先	А	企業
			В	自営(法人)
			С	自営(個人)
			D	官公庁
			欠損	不明
7	gyoshu	業種	А	農林水産
			В	鉱業
			С	建設·土木業
			D	製造
			Е	電気・ガス・水道
			F	運輸·通信

			G	卸売·小売
			Н	金融·保険
			I	不動産
			J	ホテル・飲食
			к	医療·福祉
			L	その他サービス
			М	公務
			欠損	不明
8	shokushu	職種	1	営業
			2	販売
			3	経営·管理
			4	作業·清掃
			5	オペレータ・運転手
			6	事務
			7	技術・サポート
			欠損	不明
9	nenshu	年収	(数値)	
10	DM	DM送付有	0	なし
		無フラグ	1	あり
11	flg	購入有無	0	なし
		フラグ	1	あり
12	kingaku	購入金額	(数値)	

これらは、ある物品販売会社の4000件の会員データを表すもの とします。(ここでは、便宜的に、あらかじめ 2000 件のオブザ ベーションを持つ samp_data と test_data にランダムに分けて おき、samp_data を用いてモデル作成を行うようにしていま す。)

12 個の項目の中の最初の9項目は会員の属性項目(登録情報) であり、10項目目のDMは会社の行動(直前のプロモーション) を表す変数です。11~12項目目のflg と kingaku はそれぞれプロ モーション実施後の一定期間内の会員の応答(購入有無と購入金 額)を表しているものとします。

分析の目的は、購入率の分布を説明する顧客属性の組合せや、プ ロモーションの効果を評価することとします。以下、DMT デシ ジョンツリーV1.3 の利用方法を簡単に説明する目的で、以下の 2種類の分析を行う手順と実行結果の一部を表示します。

(実行例1) 優良顧客の判別 (実行例2)施策実施効果の分析

WPS での分析例を表示していますが、SAS では以下の注意と、 グラフィック表示が日本語となっている点以外同じです。

(SAS での注意) SAS では、 新 を押した後、「SAS Message Log」画面が出現し、実行ログが表示されます。

Data Bring New Insight to Your Business

「NOTE: MNCLUDE(レベル 1)を終了します。」というメッセージが 実行ログの最後に出現すれば実行は終了です。

三× を押して「SAS Message Log」 画面を閉じると、以下の 「お知らせ」 画面が表示されます。

を押すと、分析画面で次の操作が可能になります。

3.1 (例1) 優良顧客の判別

顧客の属性組合せによって、購入確率が高い優良顧客と購入確率 が低い顧客を区別するための属性判別ルールを作成します。目的 変数はクラス変数 fg、購入確率を求めたいクラスは fg=1 (購入 あり)です。

モデルは DM 送付有無フラグ別に作成することも考えられますが、ここでは DM 送付有無フラグは説明変数の1つとして用いることとし、変数 KINGAKU は説明変数から削除します。

以下の分析手順を実行します。

3.1.1 データ読込

まず、本システムで分析を行うため、分析データ(samp_data とtest_data)を data ディレクトリに読込みます。、

データ読込 をクリックします。

データ読込み 指定画面	
データの読込み	入力指定のリセット
 入力データファイル (CSV形式) ロ 1行目に変数ラベル(半角256文字以内) 	-
RAJWRSF-ARAF ar SASF-ARAF	
保存データ名 表示するデータ件数の上限 10 v ダ数ラベルの表示	戻る
[ログ] 」 5月々の周囲に表示	^
	<u></u>

「入力WPSデータセット or SASデータセット」ラジオボタンをクリ ックします。

	データ読込み 指定画面	
	データの読込み	入力指定のリセット
○ 入力データファイル (CSV飛行)		
● 入力WPSデータセット or SASデータセッ		Ŗ
保存データ名		
表示するデータ件数の上限 10 [ログ]	 ✓ 変数ラベルの表示 □ 別々の画面に表示 	戻る
		^

		WPSテータセットを選択してくたさ	501		^
⊖ 🦂 × ↑ 🕌 « ユーサー	DMT >	samp_data → sample	v 🖒 samp	leの検索	P,
整理 マ 新しいフォルダー				H • 🔟	0
2 最近表示した場所 ▲	^	名前	更新日時	種類	9-0
		III SAMP_DATA.wpd	2017/02/13 11:0	3 WPS Dataset	
■ デスクトラブ → 開発中など		TEST_DATA.wpd	2017/02/13 11:0	13 WPS Dataset	
 デスクトップ OneDrive ドキュンシト 三番焼 磁子メールの添付ファイル ペラ・ムグループ DMT DMT 					
🌲 .atom	~	¢			>
2 個の項目 利用可能	性: オフラ・	化で利用可能			
ノファイル名(N):	SAMP_I	DATA.wpd	v WPS	data(*.wpd)	~
アデイル名(N):	SAMP_I	DATA.wpd	v WPS	data(*.wpd) K(O)	¥ بان

 (Windows の設定により、.wpd のファイル拡張子部分は表示されない場合があります)

データ読込み指定画面
データの読込み
○ 入力データファイル (CSV用定)
入力がWFSデータセット or SASデータセット Of Users VDMTVsamp.data¥samp.k¥SAMP_DATAxpd 表示
保得学一办名 SAMP_DATA
表示するデータ件数の上限 10 v 文数35ペルの表示 [02] 別々の適面に表示
· ·]

テキストボックスに読み取る WPS データセットファイル名が フルパスで表示されます。また、保存データ名 に同じ名前が自 動入力されます。

新 を押します。

[ログ]に WPS 実行ログが表示され、「実行終了」のメッセージ 画面が表示されます。

OK	を押し、	「実行終了」	メッセージ画面を閉じます
----	------	--------	--------------

WPS データセット SAMP_DATA を保存したというメッセージが表示されます。 OK を押します。

表示 を押して SAMP_DATA の内容を確認します。

	確認	
דעב ?	シッパ情報と最初の 10 件のデータを表示しますか?	
	(±い(Y) 🔓 いいえ(N)	
(tl)(Y)	を押します。	

		表示		×
¥Users¥DMT¥samp_data¥html¥temp¥SAMP_DATAhtml			↓ 100%	×
	The CONTE	ENTS Procedure		^
Data Se	et Name	SAMP_DATA		- 11
Membe	r Type	DATA		- 11
Engine		WPD		
Created	d	13FEB2017:14:49:32		
Last Mo	odified	13FEB2017:14:49:32		
Observ	ations	2000		
Variable	es	12		
Indexes	;	0		- 55
Observ	ation Length	33		- 11
Deleteo	d Observations	0		- 11
Data Se	et Type			- 11
Label				- 11
Compre	essed	NO		- 11
Sorted		NO		- 11
Data Re	epresentation	Little endian, IEEE Windows		- 11
Encodir	ng	shift-jis Japanese (SJIS)		- 11
E	ngine/Host De	pendent Information		- 1
Data Set Page Size	4096			- 11
Number of Data Set Pages	18			- 11
First Data Page	1			
Max Obs Per Page	123			~

オブザベーション数が 2000 であることを確認します。「表示」 バーをダブルクリックし、コンボボックスの「100%」を「60%」 に変更して全体を表示してみます。

samp_data データセットのコンテンツ情報と「DMT デシジョンツ リー設定」画面の「表示するデータ件数の上限」で設定してある オブザベーション数のデータ値が表示されます。

■ ボタンを押してデータ表示を終了し、「データの読込み」画 面に戻ります。

データ読込み 指定画面	-
データの読込み	
○ 入力データファイル (CSV把式)	
入力がPPSデーがだかト or SASデーがだかト CVUbersVDMTVeamp_dataVeampleVSAMP_DATA.wpd 表示	
保存データ名 SAMP_DATA 类示	
表示するデータ件数の上限 10 v マ 支払ラベルの表示 実行 戻る [ログ]	
注意 保存テージ名 SAMP_DATA 指定したデータセットな存在します。実行すると上書きされます!	
×	

同様に、TEST_DATA を読み込みます。

e -	WPSデータセットを選択してください			×
ⓒ 🍥 🕤 🕆 🕌 « 그-ザ- > DMT >	samp_data → sample	v 🖒 sampled)検索	P
整理 ▼ 新しいフォルダー			H • 🔟	
31. 最近表示した場所 ^	名前	更新日時	種類	947
タウンロード	SAMP_DATA.wpd	2017/02/13 11:03	WPS Dataset	
 デスクドッノ 調発曲など 	TEST_DATA.wpd	2017/02/13 11:03	WPS Dataset	
 ■ デスクトップ ▲ OneDrive ▲ ドキュンクト ● 満美 ● 電子メールの添付ファイル ● ホーム5ループ ● DMT DMT ● atom 	4			3
TEST_DATA.wpd 更新日時: WPS Dataset サイズ:	2017/02/13 11:03 作成日時: 2017/02/ 72.0 KB 利用可能性: オフラインで	13 11:03 利用可能		
ファイル名(N): TEST_D	ATA.wpd	v WPS da	ta(*.wpd)	v
		BB<(1.5<4 (0	

データ読込み 指定画面
データの読込み
○ 入ナデータファイル (CSV形式)
④ 入力JWPSデーラセット ar SASデーラセット CXWLsersWDMTVsamp_data¥sample¥TEST_DATA.wpd 義示
(発存テー5-名 TEST_DATA
表示するテータ件数の上環 10 v 文 実数ラベルの表示 [0 切] 別々の画面に表示
注意・保存デーダ名 SAMP_DATA 指定したデータセットは存在します。実行すると上書きされます!
,
↓ +>+=====
あねらせ
● 実行が終了しました
•
ок
\downarrow
お知らせ
データセット TEST_DATA を分析データティレクトリ C:¥Users¥DMT¥samp_data¥data¥TEST_DATA に保存しました
ОК
↓
デーク読込み 指定画面
データの読込み
○ 入力データファイル (GSV形式)
● 入力)WPSデータセット or SASデータセット CXVUsersKDMT¥samp_data¥sample¥TEST_DATA#pd 表示
「保存データ名 TEST_DATA 表示 事行が終えてしました
表示するデーが特徴の上課 10 v 文 実数 5ベルの表示 [ログ] 別々の画面に表示 実行 戻る
cpu time : 0015
cris or service/crient / or update/primeses NOTE: Submitted latements took : root time : 0156 coputine : 0015
注意・保存データ名 TEST_DATA 指定したデータセットは存在します。実行すると上書きされます!

■ ボタンを押し 「データの読込み」 画面を終了し、「メニ

ユー」画面 に戻ります。

3.1.2 ラベル付与

結果を見やすくするために変数と文字変数値にラベルを付けま す。

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

ラベル付与

を押すと、「分析データに変数ラベルと値ラベル

を定義」 画面に切り替わります。

ラベル・フォーマット 指定画面	×
分析データに変数ラベルと値ラベルを定義	入力指定のリセット
対象テータ ・ ライル定義方・イル (05/形式) 「実然をえ 変数やスペル (14) (回販、この以着目を語べたらいワイル、または 変数かえ 近期かって 現象を 変数やスル (14) (回販、この以着目を語べたらいワイル、または な数かえ 近期にプランガでは) 人とためワイル (14) (国家 (14) (14) (14) (14) (14) (14) (14) (14)	
○ 1歳アーマのた高数を排入 ● 新規定第二に会別の時に「実現会、実現からは、たの行動に1億 値からい1を記載し、 実現価につかった対象した正式のなどでは作用されます。 分析ディングの100 であったがにこのよりご(単行を行き)。	
表示するテージ件説の上課 10 v ご 変数ラベルの表示 ご 値ラベルの表示 [ログ] 51%の通識面に表示	戻る

SAMP_DATA を選択し、 ロード を押します。

ラベル・フォーマット 指定画面
分析データに変数ラベルと値ラベルを定義
对象データ SAMP_DATA 表示
○ ラベル定義ファイル (CSV形式)
く実験を実施してい。値 値ラベルトの順に、2043頃を整べたOSVファイル、または 実またとに創むの行に (美芸なる 実装持つべい)、大の行作ら (値、値ラベルトを記載し、 実験簡にプラング行き組体人したOSVファイルを指定して(ださい)
 SASプログラムファイル
く LABELステードンドくのMATTDジンドCONATステーンントまたは LABELステージンドくのMATTDジンドCONATステーシントまたは SASTDグラムファイルを指定して(だだい、それぞれ最後の指定を用いて変動ラベルと値ラベルを定義します
○ 対象データから定義を除く
○ 新規定義作成 (CSV形式)
変更にし最初の行にし実現な、変更らべは、次の行から「値」値ラベルトを記載し、 変数器にプランヴを持ずした形式のSSVアゲルを作成します。 分析ディレンドのドロSSKMに用しまっかよりに指定ではます。
表示するデー5件執の上録 10 v ご 支数5ペルの表示 ご 値 かルの表示 戻る 10 11 0 回動配表示
· · · · · · · · · · · · · · · · · · ·

SAS プログラムファイル に切り替えます。

テキストボックスにsamp_label_fmt.sas ファイルのフルパスが 表示されます。 表示 を押して samp_label_fmt.sas の内容を 確認します。

SAS 言語の LABEL 文、PROC FORMAT 文、FORMAT ステー トメントにより変数名、文字変数値にフォーマットを定義してい るコードが表示されます。
図 ボタンを押してコード表示を終了 します。

ラベル・フォーマット 指定画面
分析データに変数ラベルと値ラベルを定義
対象データ SAMP_DATA _ 表示
○ ラベル定義ファーイル (CSV形式)
「実動な、実動をつい、値、値かい」)の際に、こので現象者が大たSSVファイル、または 実数にに最初の行に「実験なる実動をへい」、大の行から「値(値クベル」を記載し、 実数期間にプラングでを構成したSSVファイルを提定してCESK
SASプログラムファイル C¥Users¥DMT¥samp_data¥samp]e¥samp_label_fmt.sas _ 表示 編集
LABELステードンドのみ。または「FORMAT7DビンジンドFORMAT7オードント。または LABELステードンドとFORMAT7DビンジンドFORMAT7オードントを含むプログロムの少た SA657ログラムファイルを描定して(次さい、それぞれ最後の指定を用いて実動ラベルと値ラベルを距離します
○ 対象デーから定義を除く
○ 新規定義作成 (CSV形式)
実設にに最初の代に「実践な「実動さべい」、次の行から「値(値ラベル」を記載し、 実動館に方ジン行せば人しただ式のCSOTアイルを付加します。 分析ディングリの口での名柄化ビラッパタ「採用学校14章」、
表示するデータ件数の上線 10 v (東数ラベルの表示) 信ラベルの表示 (四) (10 (10 (10 (10 (10 (10 (10 (10 (10 (10
^ · · · · · · · · · · · · · · · · · · ·

新を押します。

※ これ以降は、煩雑さを避けるため、実行後に出現する「ログ」 画面、「実行完了確認画面」などの表示は基本的に省略します。

ラベル・フォーマット 指定画面
分析データに変数ラベルと値ラベルを定義
対象テーシ SAMP_DATA
・ 利用定着作為(SS/形式) またっては知道がに、「大切合か」、「大切合から(値 値から)を記載し、 またっては知道がに、「大切合か」、「大切合から(値 値から)を記載し、 またってようには知道が、 SFボームンドの「10」を読む」にはないではない またってもの一方面の「10」を「10」を「10」をご加えていた。 またってもの一方面の「10」を「10」をご加えていた。 またっていた。 またっていた。
S2 End of XINCLUDEE(see) 1) C.VUlseer-VDMTVsamp_dstalligem.sas NOTE Subanitiod statements took: reput time : 0.000 1

表示 を押して SAMP_DATA の内容を確認します。

変数にラベルが定義され、文字変数値にフォーマットが適用され た表示になっていることを確認します。

※ ここでは、TEST_DATA には変数ラベルと値ラベルの定義は 故意に行わないことにします。

表示画面(ブラウザ)を閉じ、「分析データに変数ラベルと値ラ ベルを定義」画面を閉じて、「メニュー」 画面に戻ります。

3.1.3 項目分析

デシジョンツリーモデル作成前の事前分析として、説明変数とタ ーゲット変数との関連性や説明変数分布の把握を行います。

DMTデシジョンツリー起動画面										
DMTデシジョンツリーVer.1.3 認定確認定更 オガルン設定 保行指定の 現在の認定の 保存										
①データ 抽出	⇒	②項目 分析	⇒	③モデル 作成表示	⇒	④モデル 検証	⇒	⑤モデル 調整	⇒	⑥モデル 適用
データ読込		७०२२४५ 😽		モデル作成		ゲイン・収益		枝刈り		予测付与
データ加工		結果表		分岐表		比較プロット		枝接ぎ		コード保存
ラベル付与		結果図		ノード表		正誤表		予测储修正		コード管理
枝証確保		結果管理		モデル管理		アップリフト図				
データ管理				統計モデル			62017	Data Mine Tech Ltd	. (Build	2017/2/10)

クロス分析 を押すと、ターゲット変数と各説明変数間の関連

分析を行う「**クロス分析」**画面が開きます。

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

		DMT_CROSS #	旨定画面	×
		クロス分析		入力指定のリセット
入力データ (*data=) 対照データ (control=)		2		
ターゲット変数 (*y=) 説明変数 (*x=)		ターゲット値(tare	et=)	
除外する説明変数 (dropx=)				
クロスレベル (crossivi=)	① 1 〇 2 夕日	スレベル2のAIC値基準 (cro	ssaic=)	
出力クロス集計データ(ou	tcross=) _cross			
出力AIC統計量データ(o	utaic=_aic) 出力全A	JC統計量データ(oaicall=_a	icall)	
[生成コード] ibname data "G¥User:	s¥DMT¥Desktop¥samp data¥da	ta¥″:	^	
libname cross "G¥Ues options nofmter; libname library (data); Xdmt_cross(data=data, ,x= _outcross=cross_cross, APANESE)	rs¥DMT¥Desktop¥samp_data¥c labeldat=data.y=,target= outfmt=cross_fmt.outaic=cross	rross¥_cross"; _aic,oaicall≠cross_aicall,pr	int=N.languago=J	
表示する; [ログ]	データ件数の上限 10 🗸	✓ 変数ラベルの表示 □ 別々の画面に表示	☑ 値ラベルの表示	前回 表示 戻る
				Ŷ

入力データ を押し、入力データ として SAMP_DATA を選択し、ロードします。

DMT_CROSS 指定画面							
クロ	コス分析	入力指定のリセット					
入力データ (*data=) SAMP_DATA 対照データ (control=)	表示 where条件						
ターケット支援 (#y=) 説明変数 (#y=)	ターゲット値(target=)						
除外する説明変数 (dropx=)							
クロスレベル (crossivi=) ① 1 ○ 2 クロスレベ 	ル2のAIC値基準 (crossaic=)						
出力りロス集計データ (outcross=) _cross							
出力AIC統計量データ(outaic=_aic) 出力全AIC統語	計量データ (oaicall=_aicall)						
[生成コード]							
Ibname data "Q¥Uers/DNTVGsktop%anp_datk@tabs/ Ibname cross: QVUers/DNTVGsktop%anp_datk@tabs/ ibname lbray: (data). Kmt. cross(datactats SAMP_DATA)abeldat-dataSAMP_DA zoutcrossecross.cross.outfmt=cross.jmt.outaic=cross.aic.o APANESE	MMP_DATA*: _eross: TAy=target= aicallecross_aical(print=NUanguage=J 						
表示するデータ件数の上限 10 v [[ログ]	✓ 変数ラベルの表示 ✓ 値ラベルの表示]別々の画面に表示	前回 表示 戻る					
		^					

リストからflg を選択して セット を押します。

		DMT_CROSS 指定画	面		×
		クロス分析			
入力テータ (vdata)) 対照テタ (controls) ターケット変数 (v,o.) 調節検数 (v,o.) 開助検数 (v,o.) 取外する表現形象数 (dogo:2) カンパン(vcessk=) 出力りな基本手ータ (の 出力れな計量テータ) ビたカーマの「Wall Dithame controls() Dithame contr	SAMP_DATA ① 1 ② 2 夕 utcrosst) cross outaics_aic) 出力全 reVDMTPoaktop%ame_data SAMP_DATALebeldstrofata.SA SAMP_DATALebeldstrofata.SA	where条件 セント、クージット程(arget=) ロスレイン(XOAK)(健基達 (crossac=) AKX結果デーク (caical=,aical) barKSAME DATA*: crossV.crossT.crossL.coal=lprint=Nla AGLocal=lprint=Nla	nguage-J	ABCN画: 또 사람가 1 sel C 1151 2 sel C 1151 2 sel C 1151 4 horoto Locae C 포당용해 5 km sel C 1018/2만을 9 km sel C 1018/2만을 9 km sel C 1018/2만을 9 m sel km 4 유민 9 m sel km 4 유민 10 km 2018 년 2018 10 km 2018 년 2018 10 km 2018 년 2018 11 km 2018 11 km 2018 년 2018 11 km 20	ß
, 表示する [07]	デー5件数の上跟 10 v	 ▼ 素数ラベルの表示 ▼ (値) ■ 割々の通道は表示 	√		戻 る
					Ŷ

説明変数は sei から DM までの 10 個の変数を選択し、追加 を押します。

必須指定が完了すると 新 ボタンが出現します。

	DMT_CROSS 指定画面	×
	クロス分析	入力指定のリセット
入力データ (*data: 対照データ (contro ターデット変数 (*x=) 説明変数 (*x=) 除外する設明変数 (dropx=) クロスレベル (cross 出力クロス集計デー 出力AIC統計量デ	SAMP_DATA 表示 Ware条件 b) 「 - b) 「 - cs nmrer, julyo kardku, kosei cøkureki kinnusuki gyoshu shdushu - cs - - vk) (*) 2 vk) (*) 2 vk) (*) - vk) (*) - vk) (*) - - - - - - - - - - - - -	
(2E853-F) libname cross "GA libname cross "GA libname cross (GA when there is the set of the se	Nuerskom Deitsovisang, datakistaki SAMP_DATA*: *Vuerskom UT Deathopisang, datakistakistakistakistakistakistakistaki	
表示 [ログ]	するデーが特数の上限 10 v 文数5ペルの表示 J 値ラベルの表示 東行 □別々の画面に表示	前回表示展る
実行		

実行終了後、分析結果がデータ出力されたとのメッセージの後、 以下の出力表示確認画面が現れます。

Data Bring New Insight to Your Business 3	実行例	3.1	(例1)	優良顧客の判別
---	-----	-----	------	---------

le e				表示	TADIated		0000
Jse	rs#DMT#S	amp_data#ntmi#temp#dmt_c	ross_20170213_101444#	:URUSS_URUS(STABATMI		V 0000
1	ОМТ_С	CROSS 分析結果	!: 分析データ	セット: S	AMP_DA	ΓΑ, ターゲッ	ト: flg='1'
				トータル件 数	ターゲット件 数	ターゲット再現 率%	ターゲット出現 率%
NO	AIC值	説明変数	値				
0		{ANY}	{ALL}	2,000	457	100.00	22.85
1	-423.28	JUKYO 住居	不明	66	25	5.47	37.88
			1 持家(自己所有)	400	15	3.28	3.75
			2 持家(家族所有)	251	9	1.97	3.59
			3 賃貸マンション	285	130	28.45	45.61
			4 借家	390	161	35.23	41.28
			5アパート	251	95	20.79	37.85
			6.55	84		0.88	4.76
				04	4	0.00	4.70
_			7 社名	213	10	3.94	6.59
2	-239.976	9.976 GAKUREKI 最終学歴	不明	3	0	0.00	0.00
			1 中学	356	184	40.26	51.69
			2 高校	689	172	37.64	24.96
			3 専門学校	513	48	10.50	9.36
			4 大学	293	25	5.47	8.53
			5 大学院	146	28	6.13	19.18
3	-44.545	45 KAZOKU_KOSEI 家族構成	不明	48	16	3.50	33.33
			1 独身同居家族あり	697	193	42.23	27.69
			2 独身単身	307	91	19.91	29.64
			- 553 年23	572	86	18.82	15.03
				3/0	50	12.01	16.00
				349	39	12.91	10.91
			5 独身子供あり	2/	12	2.63	44.44
4	-30.1254	NENREI年齢	20~23	222	92	20.13	41.44
			24~27	219	5/	12.47	20.03
			32~35	213	44	9.63	20.66
			36~39	197	42	9.19	21.00
			40~42	170	34	7.44	20.00
			43~45	167	27	5.91	16 17
			46~48	175	34	7.44	19.43
			49~52	185	36	7.88	19.46
			53~58	197	39	8.53	19.80
			59~60	57	10	2.19	17.54
5	-28.2175	DM プロモーション	0 非実施	1,381	267	58.42	19.33
			1 実施	619	190	41.58	30.69
6	-16.4648	SEI性別	1 男性	1,291	256	56.02	19.83

Data Bring New Insight to Your Business	3 実行例	3.1	(例1)	優良顧客の判別
---	-------	-----	------	---------

1	VDMTV-		00170010 1E1444		TADIANI		
Jse	rs≠DMT¥sa	amp_data#ntml#temp#dmt_c	ross_20170213_151444#	CRUSS_CRUS	STABAtmi		V 00%
7	-11.6476	SHOKUSHU 職種	不明	247	52	11.38	21.05
			1 営業	204	32	7.00	15.69
			2 販売	204	51	11.16	25.00
			2 10200	250	76	10.02	20.00
			3 絵名・育理	239	10	10.03	29.34
			4 作業・清掃	413	89	19.47	21.55
			5 オペレータ・運転 手	283	49	10.72	17.31
			6 事務	281	83	18.16	29.54
			7 技術・サポート	109	25	5.47	22.94
	-2.66753	KINMIISAKI勘務生形能	不明	109	25	5.47	22.94
			· [143	1.400	220	71.77	
			A企業	1,409	320	11.11	23.20
			B 自営(法人)	72	19	4.16	26.39
			C 自営(個人)	168	47	10.28	27.98
			D 官公庁	242	38	8.32	15.70
)	0.77788 NENSHU 年収	NENSHU 年収		555	112	24.51	20.18
			102~255	121	36	7.88	29.75
			256~302	122	24	5.25	19.67
			303~349	124	43	9.41	34.68
			350~400	121	32	7.00	26.45
			401~449	123	34	7.44	27.64
			450~500	121	26	5.69	21.49
			501~552	122	18	3.94	14.75
			553~602	124	30	6.56	24.19
			603~663	122	28	6.13	22.95
			664~736	125	28	6.13	22.40
			737~834	121	26	5.69	21.49
			836~1278	99	20	4.38	20.20
10	12.89363	GYOSHU 業種	不明	572	125	27.35	21.85
			A農林水産	95	24	5.25	25.26
			B 鉱業	45	8	1.75	17.78
			C 建設・土木業	83	17	3.72	20.48
			D 製造	158	43	9.41	27.22
			 E 電気・ガス・水道	49	11	2.41	22.45
			F運輸・通信	108	27	5.91	25.00
			の知恵・小吉	362	93	20.35	25 69
				552	35	0.44	40.00
			「玉設・採陵		2	0.44	40.00
			■↑「動産	"	14	3.06	18.18
			J ホテル・飲食	76	18	3.94	23.68
			K医療・福祉	38	10	2.19	26.32
			Lその他サービス	118	30	6.56	25.42
			M 公務	214	35	7.66	16.36

クロス分析 結果表は、10 個の説明変数を、ターゲット 変数 fg と関連が強い順 (AIC 値の小さい順) に表示し ます。結果から、jukyo, gakureki, kazoku_kosei, nenrei, DM, sei ,shokushu, kinmusaki の8 個の変数は、AIC 値 が負の値となっており、fg と関連があることを示して います。 一方、表の末尾の NENSHU と GYOSHU に ついては AIC 値がプラスとなっており、fg との関連性 が認められないことを表しています。

また、各変数カテゴリ別の該当度数、ターゲット件数、 ターゲット再現率(=ターゲット件数/総ターゲット件 数*100)と出現率(=ターゲット件数/該当件数*100) が表示されます。 文字タイプ説明変数のカテゴリ値と その該当件数、数値タイプ説明変数の存在範囲、外れ値

や欠損値の存在割合などが把握できます。

■ ボタンを押して クロス分析結果表示 を終了し、「クロス分析」画面に戻ります。

3.1.4 ツリーモデルの作成

「クロス分析」画面で 認識 を押します。

		クロ	コス分析	入力	指定のリセット
入力データ (*data=	SAMP_DATA		表示 where条件		
対照データ (control	ii)				
ターゲット安敬 (*y=)) fie		ターゲット値(target=) ^1*	-	
説明実数 (*x=)	seinenreijukyokazo nenshu DM	ku jkose i gakurek ik i	nmusaki gyoshu shokushu 💍 🔔		
除外する説明実数 (dropx=)			¢		
クロスレベル (cross)	vi=) 💿 1 🔾	2 クロスレベリ	162のAIC値基準 (crossaic=)		
出力クロス集計デー	夕 (outcross=) [cross		表示		
出力AIC統計量デー	-タ(outaic=_aic) 表	示 出力全AIC統計	量データ (oaicall=_aicall) 表示		
[生成コード]					
Xdmt_cross(data=)					
x=sei nenrei jukyi outoross=cross_c APANESE)	dataSAMP_DATA, labe o kazoku kosei gakure ross, outfint=cross_fm	Idat=data.SAMP_DAT ki kinmusaki gyoshu toutaic=cross_aic.or	FAy=flg.target=" " shokushu nenshu DM sicall=cross_sicall.print=NJanguage=J v	実行が終了しました	
メニSei nenrei jukyi outorossicross.c APANESE) 表示 [ログ]	detaSAMP_DATA,labe o kazoku kosei gakure ross.outfmt=cross.Jm するデータ件数の上環	Idatedata SAMP, DA1 ki kinimusaki eyoshu toutaic=cross_aic.ot 10 v 5	TRAy=Tit_tateet=「1" isholarku romahu DM isballincross_aisbillprint=Nlaneuage=J ご 実験らペルの表示 」別 4 の画面に表示	実行が終了しました 実行 パリーモデル 有利意識面	前回 表示

クロス分析画面で指定した入力データ、目的変数、そし て分析結果に基づき、目的変数との関連性が見られた変 数のみを説明変数に指定した「デシジョンツリーモデル 作成」画面に切り替わります。(※除外する説明変数 に 関連が無いとみなされた 2 つの変数 NENSHU, GYOSHU が自動指定されます)

入力検証データ	\mathcal{O}		を押し	ます。
---------	---------------	--	-----	-----

	DMT_TREE 指定画面	
	デシジョンツリーモデル作成	入力指定のリセット
入力データ (*data=) 対闘データ (control=	SAMP_DATA 表示 where条件	
入力検証データ(tes) 対照検証データ(tes)	data=)	
交差検証 (testdata)	CV OY®N	
ターゲット変数 (*y=)	fig ターゲット(値 (targets) *1*	
说明复数 (*x=)	sei nenrei Myö kazoku kosei gakureki kinmusaki gyöshu shokushu nenshu DM	
除外する i X明度数 (drops=)	NENSHU GYOSHU	
順序尺度說明変数	ordinatx=)	
循環尺度説明変数	cyclicx=)	
最小ノード件数 (min	ent=) ⑥ AUTO 〇 ノード件数	
最大分岐レベル (ma	divl=) 5 v 出力ツーモデル (outmodel=) _tree	
「生成コード」		
Ibname data "C.¥L Ibname model "CR options nonmern, Ibname Ibrary (da Xdmt, tree(datavdat "x=sei nerrei jukyo "drop:=NENSHU GYOSHU.outmodel)	Iner YOFTrange, database GABP OFTA": A Stand Standard Standard CABP OFTA': Salado DATA-vieta terept" /' Salado Data-vieta (Saladota) sensibul shakabu menahu DM model, Jeneary sateri (Saladota) Saladota (Saladota) sensibul Saladota (Saladota) sensibul sateri (S	
表示す [ログ]	るデーが料数の上環 10 v 文数5ペルの表示 2 値5ペルの表示 実行 31 の画面に表示	戻る
		~ ~

TEST_DATA を選択し、ロードします。

最小ノード件数の指定を 自動 から ノード件 数 に切り替えます。

	DMT_TREE 指定曲向	
	デシジョンツリーモデル作成	入力指定のリセット
入力データ (*data=)	SAMP_DATA 表示 where条件 。	
対照データ (control=)		
入力検証データ(test	data=) TEST_DATA _ 表示 where条件	
対照検証データ(test	cantrol=)	
交差検証 (testdata=	CV) OY IN	
ターゲット実数 (*y=)	fig ターゲット値(target=) * 1*	
说明麦数 (*x=)	sei nenrei juliyo kazoku,kosei gakureki kinmusaki gyoshu shokushu ү 🔔	
除外する i X明変数 (drops=)	NENSHU GYOSHU	
順序尺度説明変数(ardinatx=)	
(結環尺度説明変数(cyclicx=)	
Hart In Market Color		
取小シートI+M2 (mini 品本公社してい(mini		
(生成コード)	a a myy a c myy a c w consider i Tuse	
Ibname data "G¥U Ibname model "G¥ options nofmter; Ibname Ibrary (dat Kdmt, tree(data=dat .x=sei nernei jukyo .dropx=NENSHU GYOSHU.outmodel=)	servit/NT/Poleshots/searce_data/Band/SAMP_DATAY: A Development of the service of	
表示す [ログ]	5テーが特徴の上限 10 マ 実験ラベルの表示 ぼうベルの表示 〕 別々の画面に表示	展る
		^
		~

ノード件数の値 に 100 と入力してから 🎫 を押します。

	DMT_TREE 指定画图	
	デシジョンツリーモデル作成	入力指定のリセット
入力データ(*data=)	SAMP_DATA _ 表示 where条件 _	
対照データ (control=)		
入力検証データ(test	idata=) TEST_DATA _ 表示 where条件 _	
対照機証データ(test	icantrol=)	
交差検証 (testdatar	CV) OY ON	
ターゲット支強 (*y=)	fig ターゲット値(target=) 「1」	
说明素敬 (*x=)	sei nenrei kikyo kazoku kosei gakureki kinmusaki gyoshu shokushu 💦 🔔	
除外する i 党明変数 (drops=)	NENSHU GYOGHU	
顺序尺度説明変数(ardinabr=)	
循環尺度説明実数(cyclicx=)	
B.J. J MARK (min		
最大公園LCL (mag		
(生成コード)	a a million for more A mee	
Ibname data "G¥U Ibname model "G¥ Ibname model "G¥ Ibname library (data Xdmt_tree(datardat x=sei nerrei jukyo dropo:nENSHU GYOSHU,outmodel: recat=Y	InternATIONTCharlowstopkiesung, databilisedSAME DATAY; Anternational Control of Control	
表示す [ログ]	るデータ件級の上限 10 v 文献5ペルの表示 2 値5ペルの表示 □別々の画面に表示	戻る
		^

分析が実行され、しばらくすると終了します。 作成されたモデルが既定の_tree という名前で シス テムに保存されます。

35 / 215

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

3.1.5 ツリーモデルの表示(ツリー分岐表)

分類木モデルの場合、ツリー分岐表、ゲインチャート、 比較プロットが表示できます。

?	ッリー生成結果を表示しますか? (注意)結果が複雑な場合は表示できない場合がありま その場合は分岐表で「ッリー分岐表データ」を作成し表	さす 示してください
		มมส์(N)

確認

ツリー分岐表の表示

^{結果表}を押します。
Data Bring New Insight to Your Business 3 実行例 3.1 (例1)優良顧客の判別

(Users¥DMT¥samp_dat	a¥html¥temp¥tree_treetab_;	20170213_152326¥TREE_	TREETAB html	反示						•	80%			
DN	DMT_TREE モデルテーブル(モデルデータセット: modeltree, テストデータに対するモデル形式データセット: testmdl.TESTtree)													
						モデル 件数割 合%	モデル ター ゲット 再現 率%	モデル ター ゲット 出現 寧%	テスト 件数割 合%	テスト ター ゲット 再現 事%	テスト ター ゲット 出現 率%			
iv10	lv11	Ivi2	lv13	Ivl4	lv15									
ROOT:22.85% (457/2,000):22.80% (456/2,000)	N0: 4.56%(46/1,008): 4.25%(42/988) JUKYO 住居="2 持家(家族所 互)" "1 持家(自己所	N00: 1.28%(9/701): 1.27%(9/709) DM プロ モーション="0 非実	N000: 0.00%(0/518): 0.00%(0/522) KINMU SAKI 勤務先形態=" 不明","A 企業"			25.90	0.00	0.00	26.10	0.00	0.00			
有)","1 有)","6	有)","6 察","7 社宅"	施" N01: 12.05%(37/307): 11.83%(33/279) DM プ ロモーション="1 実 施"	N001: 4.92%(9/183): 4.81%(9/187) KINMU SAKI 勤務先形態="D 官公 庁","B 自営(法人)","C 自営(個人)"			9.15	1.97	4.92	9.35	1.97	4.81			
			N010: 2.40%(3/125): 1.72%(2/116) SHOKUSHU 職種="1 営業","5 オペ レータ・運転手","7 技術・サポー ト","3 経営・管理"			6.25	0.66	2.40	5.80	0.44	1.72			
			N011: 18.68%(34/182): 19.02% (31/163) SHOKUSHU 職種=" 不 明","6 事務","2 販売","4 作業・清 掃"			9.10	7.44	18.68	8.15	6.80	19.02			
	N1: 41.43%(411/992): 40.91%(414/1,012) JUKYO 住居="5 アパー	N10: 16.24%(57/351): 13.57%(49/361) GAKUREKI最終学歴	N100: 31.55%(53/168): 23.90% (38/159) NENREI 年齡=40~58			8.40	11.60	31.55	7.95	8.33	23.90			
	ト"," 不明","4 借家","3 賃貸マンション"	=" 不明","3 専門学 校","4 大学"	N101: 2.19%(4/183): 5.45%(11/202) NENREI 年齡=LOW~<40,58<~HIGH			9.15	0.88	2.19	10.10	2.41	5.45			
		N11: 55.23% (354/641): 56.07% (365/651) GAKUREKI	N110:78.98%(139/176):83.23% (139/167) NENREI 年齡=LOW~27			8.80	30.42	78.98	8.35	30.48	83.23			
			N111: 46.24%(215/465): 46.69% (226/484) NENREI 年齡=27<~HIGH	N1110: 37.30% (119/319): 36.75% (122/332) GAKUREKI 最終学歴="5 大学 院","2 高校"	N11100: 28.65%(53/185): 33.00%(66/200) SHOKU SHU 職種="5 オペレータ・運転 手","6 事務","7 技術・サポー ト","4 作業・清掃","1 営業"	9.25	11.60	28.65	10.00	14.47	33.00			
					N11101: 49.25%(66/134): 42.42%(56/132) SHOKU SHU 職種=" 不明","2 販売","3 経 宮・管理"	6.70	14.44	49.25	6.60	12.28	42.42			
				N1111: 65.75% (96/146): 68.42% (104/152) GAKUREKI 最終学歴="1 中学"		7.30	21.01	65.75	7.60	22.81	68.42			

ツリー分岐表には、ノード分岐に採用された説明変数 値とターゲット出現率(ターゲット件数/ノード件数) が分岐ノードごとに表示されます。また、終端ノードに ついては、「件数割合%」、「ターゲット再現率%」、「ターゲッ ト出現率%」が右側に表示されます。

ツリー分岐表は、本アプリケーションのツリー生成ア ルゴリズムに従って、自動的に出現率(購入率)の高低 の差ができるだけ顕著となるように、分析対象データを 逐次的に分けていく過程が表示されています。なお、こ こでは、ツリー生成条件として、最小ノード件数=100、 最大分岐レベル=5(既定値)をセットしています。

出現率の分布は、まず 住居区分 の違いによって最も大 きくなっており、持家系のグループ(1,008 件)では 4.56% の出現率(平均の 22.85% の約 1/5)、賃貸系の グループ(992 件)では41.43%(平均の約2 倍)の出 現率を示しています。さらに、持家系のグループは DM プロモーション有無 によって分かれ、プロモーション 実施 グループは 12.05%、プロモーション非実施 グル ープは 1.28%の出現率となっています。その他のグルー プも、出現率の高低が最も際立つように自動的に選ばれ た項目値によって分かれていきます。最終的に 10 個の グループ(終端ノード)が生成されており、各ノードの 出現率は 0%~78.98%の範囲に分布しています。

3.1.6 ツリーモデルの評価(ゲインチャート)

確認	
? ゲインチャートを表示しますか?	
はい(Y) いいえ(N)	

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

ゲインチャート はモデルの予測出現率の順位と実績出 現率との関連を評価するモデルの精度指標の1つです。 左上に膨らんだ曲線になっているほど、モデルの精度 (ここでは予測確率の大きさと実際のイベント出現率 との関連性を意味します)が高いことを表し、テストデ ータにモデルを当てはめたときの曲線との差が小さい ほどモデル精度の安定性(汎化性能)が高いことを表し ます。この結果例では、まずまずの精度と安定性を示し ています。

比較プロット(予測値と実際値の散布図)の表示

3.1.7 ツリーモデルの評価(比較プロット)

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

比較プロット はモデルの予測値と実績値の差(誤差) の大きさを評価します。TEST_DATA にモデルを当ては めた場合の、10 個の終端ノードの予測出現率と実績出現 率の散布図が表示されます。終端ノードを表す赤い円が 0 から 0.65 の範囲に広がり、いずれも対角線上の近くに プロットされていますので、検証データにおけるツリー モデルの予測値は実績値に近かったことがわかります。

「デシジョンツリーモデル作成」 画面を終了し、「メニュ ー」 画面 に戻ります。

3.1.8 ツリーノードの表示(ノード定義表)

					DMTデシジ!	ョンツリ	一起動画面				
	DMTデジ	ンジョ	ョンツリー	Ver.	1.3	9 0 203	変更 オプショ	/設定	保存指定	Ø	現在の指定の 保存
	①データ 抽出	⇒	②項目 分析	⇒	 ③モデル 作成表示 	⇒	④モデル 検証	⇒	⑤モデル 調整	⇒	⑥モデル 適用
l	データ読込		クロス分析		モデル作成		ゲイン・収益		枝刈り		予測时与
l	データ加工		結果表		分岐表		比較プロット		枝接ぎ		コード保存
l	ラベル付与		結果図		ノギ表 🔓		正誤表		予測値修正		コード管理
l	挟証確保		結果管理		モデル管理		アップリフト図	1			
	デーダ管理				統計モデル			e2017	Data Mine Tech Lto	I. (Build	2017/2/10)

ノード表 を押すと、「ノード定義表」 画面に切り

替わります。

既存のツリーモデルに対し、各終端ノードの説明変数組 合せ定義が分かる形式でモデルの内容を表示します。

入力モデル を選択します。

_tree を選択し、ロードします。

DMT_NODETAB 指定画面	×
ノード定義表	入力指定のルセット
入力モデル(*model=) _tree _ 入力検証モデル(test=) TEST_tree _	
ノード表示順 (order=) ● 昇順 ○ 降順 出力ノード定義表データ (outtab=)	
表示タイトル(title=) 詳細出力(detail=) 〇 Y ⑧ N 結果の画面表示(print=) ⑨ Y 〇 N	
ラベル・フォーマット参照データ(labeldata) SAMP_DATA 表示 (生成コード)	
Ibrane model / CVUers/DIVTivano data/ferencede / moi Ibrane model / CVUers/DIVTivano data/ferencede / moi Ibrane data / CVUers/DIVTivano data/data/SANP_DATA'; Ibrane data ' CVUErs/DIVTivano data/data/SANP_DATA'; Ibrane data/SANP_DATA'; Ibrane data ' CVUErs/DI	
[ログ] フ数ラベルと値ラベルを使用しない 別々の画面に表示	実行 戻る
	Ŷ
	×

入力検証モデル には「デシジョンツリーモデル作成」に おいて、入力検証データに指定された TEST_DATA に モデル _tree を適用した モデル形式データセット **TEST__tree** が自動入力されます。

また、出力ノード定義表データ、ラベル・フォーマット 参照データの項目にもそれぞれ、 _nodetab, SAMP_ DATA が自動入力されます。

ノード表示順を降順にセットして、ノードの並びを出 現率の小さい順 (デフォルトの 昇順) から 大きい順 (降順) に変更し、 第5 を押します。

DMT_NODETAB 指定画面	X
ノード定義表	入力指定のリセット
A.7)を行ん(#nodel) 人力的経行方小(bend) 上すを レード表示用(GotAl Formation (Control Control Contro	
[05] 実数5ベルと値5ベルを使用しない 別々の画面に表示	<u>実行</u> 戻る
	بر

お知らせ	×
1	ノード定義表を表示します
	ок

実行終了後、上記画面が表示されますので、 OK を押します。

ノード定義表の表示

Data Bring New Insight to Your Business 3 実	亍例 3.1	(例1)	優艮顧客の判別
---	--------	------	---------

						表示													×
C:¥Us	ers¥DMT	ésamp_data¥html¥tem;	p¥nodetab_2017021	3_160149¥NODETABhtml													¥	70%	~
		DMT		ドテーブル (モデル: m	nodeltree,	テスト: testmdl.1	EST	tre	e ወዘ	比較) ·	ターゲ	ット出	現率	の大き	きい順				^
No	· 終端ノー ド	IVI1	W2	1vi3	1v14	MS	件数 割 合%	ター グット 再現 率%	ター グット 出現 事%	累積件 数割 合%	累積ター ゲット再 現率%	累積 ター ゲット 出現 率96	テスト 作数割 合%	テスト ター ゲット 再現 率%	テスト ター ゲット 出現 率%	テスト異 積件数割 合%	テスト累 積ター ゲット再 現率96	テスト累 積ター ゲット出 現率96	
	1 _N110	N1: 41.43%(411/992): 40.91%(414/1,012) JUKYO 住居="5 アパー ト","不明","4 借家","3 賃貸マンション"	N11: 55.23% (354/841): 56.07% (365/651) GAKUREKI 最終学歴 =*5大学院","2 高 校"."1 中学"	N110: 78.98%(139/176): 83.23% (139/167) NENREI年齡=LOW~27			8.80	30.42	78.98	8.80	30.42	78.98	8.35	30.48	83.23	8.35	30.48	83.23	
	2 _N1111	N1: 41.43% (411/992): 40.91% (414/1,012) JUKYO 住居="5 アパー ト", " 不明", "4 借家", "3 賃貸マンション"	N11: 55.23% (354/841): 56.07% (365/651) GAKJREN 最終学歴 ="5大学院","2 高 校"."1 中学"	N111: 46.24%(215/485): 46.89% (228/484) NENREI年齢 =27<~HIGH	N1111: 65.75% (96/146): 68.42% (104/152) GAKUREN 最終学 歴="1 中学"		7.30	21.01	65.75	16.10	51.42	72.98	7.60	22.81	68.42	15.95	53.29	76.18	
	3 _N11101	N1: 41.43%(411/992): 40.91%(414/1,012) JUKYO 住居="5 アパー ト","不明","4 借家,"3 賃貸マンション"	N11:55.23% (354/041):50.07% (365/051) GAKJREKJ 最終学歴 =*5大学院","2 高 校","1 中学"	N111: 48.24%(215/485): 48.89% (226/484) NENREI 年齢 =27<-HIGH	N1110: 37.30% (119/319): 36.75% (122/332) GAKUREKI 最終学 歴=*5大学院","2高 校"	N11101: 49.25%(60/134): 42.42%(50/132) SHOKUSHU 艱運="不明","2 販売","3 経営・管理"	6.70	14.44	49.25	22.80	65.86	86.01	6.60	12.28	42.42	22.55	65.57	66.30	
	4 _N100	N1: 41.43%(411/992): 40.91%(414/1,012) JUKYO 住居="5 アパー ト"."不明","4 借家","3 賃貸マンション"	N10: 18.24% (57/351): 13.57% (49/381) GAKUREKI 最終学歴="不明","3 專門学校","4 大学"	N100: 31.55%(53/168): 23.90% (38/159) NENREI 年齡=40~58			8.40	11.60	31.65	31.20	77.48	58.73	7.95	8.33	23.90	30.50	73.90	55.25	
	5_N11100	N1: 41.43%(411/992): 40.91%(414/1.012) JUKYO 住居="5 アパー ト"," 不明","4 借家","3 賃貸マンション"	N11:55.23% (354/841):56.07% (385/851) GAKUREKI 最終学歴 =*5大学院:"2 高 校"."1 中学"	N111:48.24%(215/485):48.89% (226/484) NENREI年齢 =27<~HIGH	N1110: 37.30% (119/319): 38.75% (122/332) GAKUREKI 最終学 歴="5 大学院","2 高 校"	N11100:28.65%(53/185): 33.00%(68/200) SHOKUSHU 課題=15 オペ レータ・運転手118 事 務1117 技術・サポート114 作業・清掃1111 営業1	9.25	11.80	28.65	40.45	89.06	50.31	10.00	14.47	33.00	40.50	88.38	49.75	
	3 _N011	N0: 4.56%(48/1,008): 4.25%(42/988) JUKYO 住居="2 持泰(家旗所 有)"."1 持泰(自己所 有)"."8 寮"."7 社名"	ND1: 12.05% (37/307): 11.83% (33/279) DM プロ モーション="1 実施"	N011: 18.68%(34/182): 19.02% (31/163) SHOKUSHU 職種="不 明","6 事務","2 販売","4 作業 - 清 掃"			9.10	7.44	18.68	49.55	96.50	44.50	8.15	6.80	19.02	48.65	95.18	44.60	
	7_N001	N0: 4.56%(48/1,008); 4.25%(42/988) JUKYO 住居="2 持家(家旗所 有)","1 持家(自己所 有)","6 豪","7 社宅"	N00: 1.28%(9/701): 1.27%(9/709) DMプ ロモーション=*0 非 実施	N001: 4.92%(9/183): 4.81% (9/187) KINMUSAK(勤務先形粮="D 官公庁","B 自営(法人)","C 自営(個 人)"			9.15	1.97	4.92	58.70	98.47	38.33	9.35	1.97	4.81	58.00	97.15	38.19	
	3 <u>N010</u>	N0: 4.58%(48/1,008): 4.25%(42/988) JUKYO 住居="2 持家(家旗所 有)",""1 持家(自己所 有)","8 豪","7 社宅"	ND1: 12.05% (37/307): 11.83% (33/279) DM プロ モーション='1 実施''	N010: 2.40%(3/125): 1.72% (2/118) SHOKUSHU 職種="1 営 業","5 オペレータ・運転手","7 技 術・サポート","3 経営・管理"			6.25	0.66	2.40	64.95	99.12	34.87	5.80	0.44	1.72	63.80	97.59	34.87	
3	9 <u>N101</u>	N1: 41.43%(411/992): 40.91%(414/1,012) JUKYO 住居="5 アパー ト","不明","4 借家","3 賃貸マンション"	N10: 16.24% (57/351): 13.57% (49/361) GAKUREKI 最終学歴="不明","3 専門学校","4大学"	N101: 2.19%(4/183): 5.45% (11/202) NENR日年齢 =LOW~<40,58<~HIGH			9.15	0.88	2.19	74.10	100.00	30.84	10.10	2.41	5.45	73.90	100.00	30.85	
10	0000_0	N0: 4.56%(48/1,008): 4.25%(42/988) JUKYO 住居="2 持家(家族所 有)"."1 持家(自己所 有)"."6 熹"."7 社宅"	N00: 1.28%(9/701): 1.27%(9/709) DMプ ロモーション="0 非 実施"	N000: 0.00%(0/518): 0.00% (0/522) KINMUSAK(動態先形態=" 不明","A 企業"			25.90	0.00	0.00	100.00	100.00	22.85	26.10	0.00	0.00	100.00	100.00	22.80	~

ノード定義表には、終端ノード別の生成規則(説明変数 値の組合せ方)を表すノードの定義(この例では「M1」 ~「M5」の最大5つの変数値の組合せ)、と各ノードの ターゲット値に関する統計量が表示されます。統計量と しては、ノードごとの「件数割合約」、「ターゲット再現率約」、 「ターゲット出現率%」がノード分岐表の場合と同じく表 示され、さらに、その右側に、No1からそのノードの Noまでの累積値も表示されます。また、今回のように 検証データ(TEST=パラメータ)を指定した場合は、モ デルを検証データに適用した場合の統計量も表示され ます。

ノード定義表を見ると、優良顧客(または不良(不芳) 顧客)のイメージをノードの説明変数値の組合せによっ て把握することができます。

また、優良顧客や休眠顧客を対象として、さまざまな施 策(営業促進施策や与信施策など)を実施する場合、ノ ード定義表で集計表示された各種統計量は、施策実施範 囲(累積件数割合)や施策実施効果(累積ターゲット再現率 と累積ターゲット出現率)を検討するために用いることも できます。 例えば、この結果から、上位3個の終端ノードに該当す る顧客のみを対象として、新たな施策を実施する場合、 施策実施対象者の分析母集団全体に対する割合(「累積 件数割合%」)は22.8%、施策実施により応答するであろ う顧客の分析母集団全体に対する捕捉割合(「累積ターゲ ット再現率%」)は66.86%、期待出現率(「累積ターゲット 出現率%」)は66.01%と見積もることができます。つま り、全体の売上件数の6割を稼ぐ2割の優良顧客を特定 することが出来たということを示しています。

3.1.9 モデル予測値の付与(スコアリング)

分析結果画面、デシジョンツリーモデル作成画面を閉じ て、「メニュー」画面 に戻ります。 次の分析のために、検証用データ(TEST_DATA)にモ デル予測値を付与します。

予測付与を押します。

41 / 215

		DMTテシジョングリー起動画面													
DMTデシ	DMTデシジョンツリーVer.1.3 設定確認定更 オガルン校定 保存 指定の 指定の 指定の 保存 単定の 保存 第 で														
①データ 抽出	②項目 分析	③モデル ⇒ 作成表表	- 示 → 検i	デル 証 ⇒ 調査	^{テル} ≌ ⇒	⑥モデル 適用									
データ読込	クロス分析	モデル作成	ゲイン・	(7益 枝)	10	予測付与									
データ加工	結果表	分岐表	比较力	ロット 枝折	ŧŧ	コード保存									
ラベル付与	結果図	ノギ表	正時	表予測版	修正	コード管理									
挟証確保	結果管理	モデル管理	アップリ	1-12											
データ管理		統計モデル		@2017 Data Mine	Tech Ltd. (Build	2017/2/10)									

「データに予測値を付与」画面に切り替わります。

DMT_TREESCORE データスコア指定画面	
データに予測値を付与	入力指定のリセット
入力モデル (*models) 入力データ (*datas)	
出力スコアデータ (outscore=)	
予測更数名(gred=)	
アンマッチ処理(unmatch=) ・ 欠損 ・ テ洲能が低い方 ・ 仲裁が多い方 ・ 子洲能が低い方 	
[生成]-ド]	
Tensors and "Children Unifferen Ladifier and Article Children Ladifier Children Children Ladifier Children Children Children Children Chil	
表示するテータ件独の上陸 10 v 文地ラベルの表示 2 値ラベルの表示 [0 27]	戻る
	^
	~

入力モデル に _tree をロードし、入力データ に TEST_DATA をロードします。

DMT_TREESCORE データスコア指定画面 入力指定のリセット データに予測値を付与 出力スコアデータ (outscore=) ________ 子測技動名(pred=) ________CONF アンマッチ処理(unmatch=)
● 欠損
・ 予期値が低い方
・ 件数が多い方
・ 予期値が高い方 (生がなード) Ibname data "O'VUsersVDMTVsamp, dataVdataVTEST_DATA": Ibname model "O'VUsersVDMTVsamp, dataVdataV treescore" Ibname cutscore "O'VUsersVDMTVsamp, dataVdataV treescore libname outscore options norhmer, libname library (data), %dmt treescore(data=data.TEST_DATA.model=model_tree.outs greds_CONF .outcode=CX*Users¥DMT¥samp_data¥scorecode¥_temp_code.li mp data¥scorecode¥ temp code language=JAPANESE) 表示するデータ件数の上限 10 v 支援ラベルの表示 J 値ラベルの表示 別々の画面に表示 西日 戻る [ログ] お知らせ 予測値付与データセット _treescore を ディレクトリ
 C:¥Users¥DMT¥samp_data¥data¥_treescore に保存しました ок 📐 予測値表示 を押します。 実行が終了しました -予測値 表示 戻る 実行 確認 スコア付与結果(最大500)を表示しますか? (はい(Y)

予測値付与結果の表示

新を押します。

Data Bring New Insight to Your Business 3 実行例 3.1 (例1) 優良顧客の判別

rs¥D	MT	éDeskto	p¥san	np_data¥html¥t	reescore¥	dmt_outsco	prehtml									70%
							Th	e WPS	Syste	m						
Obs	sei	nenrei	ju kyo	kazoku_ko sei	gakureki	kinmusaki	gyoshu	shokushu	nenshu	DM	flg	kingaku	ノード番号	終端判定	アンマッチ判定	モデル予測値
1	2	30	2	2	3	A	С	1	376	1	0	0	_N010	YES	NO	0.024
2	1	42	4	3	1					1	0	0	_N1111	YES	NO	0.6575342466
3	2	21	2	1	3	A	1	6	913	1	0	0	_N011	YES	NO	0.1868131868
4	2	41	5	1	1	С		4		1	1	100	_N1111	YES	NO	0.6575342466
5	1	48	5	3	4	D	м	4	305	1	0	0	_N100	YES	NO	0.3154761905
6	2	22	5	1	3					1	0	0	_N101	YES	NO	0.0218579235
7	1	28	1	3	3	A		4		1	0	0	_N011	YES	NO	0.1868131868
8	2	26	2	1	4	А	G	2	327	1	0	0	_N011	YES	NO	0.1868131868
9	2	33	3	1	4	А	L	6	346	1	0	0	_N101	YES	NO	0.0218579235
10	1	55	4	3	1	A	F	7	713	1	0	0	_N1111	YES	NO	0.6575342468
11	1	30	6	2	3	С		4		1	0	0	_N011	YES	NO	0.1868131868
12	2	30	1	4	1	A	F	6	831	1	0	0	_N011	YES	NO	0.1868131868
13	2	41	4	2	1	A		4		1	1	100	_N1111	YES	NO	0.6575342466
14	1	41	1	3	1	D				1	0	0	_N011	YES	NO	0.1868131868
15	2	42	3	2	1	A	G	2	386	1	1	496	_N1111	YES	NO	0.6575342466
16	2	45	3	1	2	A				1	0	0	_N11101	YES	NO	0.4925373134
17	2	28	4	1	3	A	1	5	775	1	0	0	_N101	YES	NO	0.0218579235
18	2	37	2	2	3	A	н	1	982	1	0	0	_N010	YES	NO	0.024
19	2	56	3	1	1	A				1	1	100	_N1111	YES	NO	0.6575342466
20	2	58	3	1	4	A	E	6	443	1	0	0	_N100	YES	NO	0.3154761905
21	2	23	2	1	3	Α	D	6	747	1	0	0	_N011	YES	NO	0.1868131868
22	1	47	5	4	3	D	м	3	835	1	0	0	_N100	YES	NO	0.3154761905
23	1	27	1	2	4	A		4		1	0	0	_N011	YES	NO	0.1868131868
24	2	22	4	2	2	A	G	2	527	1	0	0	_N110	YES	NO	0.7897727273
25	2	20	2	1	1	A	G	2	476	1	0	0	_N011	YES	NO	0.1868131868
26	2	48	1	4	1					1	0	0	_N011	YES	NO	0.1868131868
27	2	20	5	1	1	Α	F	6	379	1	1	489	_N110	YES	NO	0.7897727273
28	1	49	7	4	3	D	м	6		1	0	0	_N011	YES	NO	0.1868131868
29	1	39	3	4	3	A	1	5	1028	1	0	0	_N101	YES	NO	0.0218579235
30	1	54	3	3	2	D	м	6		1	0	0	_N11100	YES	NO	0.2864864865
31	2	47	4	1	3	A	J	1	657	1	0	0	N100	YES	NO	0.3154761905

3.1.10 収益チャート

検証データに付与したモデル予測出現率を使って、出現 率が高い方からどの出現率までの終端ノードに対して 営業施策を実施すると最大収益が得られるかを計算し ます。ただし、この営業施策の1件当たりのコストは50、 購入発生の場合の収益は検証データの実績購入金額(変 数 kingaku の値)とみなします。

ゲイン・収益 を押します。

DMTデシ	DMTデシジョンツリーVer.1.3 数理確認定要 オカルが定 (#行相差の (#行 日本) (#行													
①データ 抽出	⇒	②項目 分析	⇒	③モデル 作成表示	⇒	 ④モデル 検証 ⇒ 	⑤モデル 調整	⇒	⑥モデル 適用					
データ読込		クロス分析		モデル作成		ゲイン・収益	枝刈り		予測付与					
データ加工		結果表		分岐表		比較プロット	枝接ぎ		コード保存					
ラベル対与		結果図		ノド表		正誤表	予測值修正		그사管理					
挟征確保		結果管理		モデル管理		アップリフト図								
データ管理				統計モデル		92017	Data Mine Tech Ltd. (Build :	2017/2/10)					

DMTデシジョンジリー記輸画面

入力データの …… を押します。

		DMT_GAINCHART 指定曲面	
	ゲイン	チャート・収益チャート	入力指定のリセット
、力モデル (model=)		入力検証モデル (tests)	
カデータ (data=)		N	
ー Fach 変数 (ve)		なーゲット语 (target=)	
潮変数名(pred=)		グループ別は集計	
グラフの種類(type=)		
⑦ ゲインチャート	○ ROCチャート ○ 収益チャート		
;示外(トル (title=)			
등장(NJL (title=) E&고-ド] boare model ^CV	援 UsersVDMTWsamp.dataVtreemodell	機通出ウデータ [zoh	
示かイトル(title=) 上成コード] bname model ^OW bname test [*] OW dort painchart(mod dmt_painchart(mod	B Users¥DMT¥sang,data¥treemodell ters¥DMT¥sang,data¥treemodell [™] el=model,TP=1,FP=-1,dev=GiF <i>st y</i> t	NBIBBL7797-99 _aan Y Sch 5 Janeuwer JAPANESE engh Janeuwer DHOLISH0	
示尔(トル (title=) E成コード] thrame model 「OV phone test "ONU ptons not miter; dmt_gainchart(mod	しませいがいTheorem data interCMTTearce, data intercomt interce, data interced interce	18目後出力データ _san で、 sch 5 Janeussen JAPANESE.engh Janeussen DAUISH0 の ままわつらんの表示 ② (自つつんの表示 ○) 10 × 0回回に表示	展る
示タ(トル (itile=) EKコード] Dname model ^C OV Dname test ^C ONU toros nofmer: Int_sainchart(mod が) 表示するデー グ]	Jurrat DMTWang, data/treenooded extra DMTWang, data/treenooded extra DMTWang, data/treenooded elemondel, TP=LFP=-LdevrolE.eu Johk & Ldk 10 v S	(周囲近2)データ _ean C+5.Damaase="JAPANESE_expl_Jamaase="DOLISH0 (美知うつふの表示 2) (他うつふの表示) 別+の調節に表示	58
:示か(トル(titles) E&Cコード] Datame model "CV Datame test 「CVU Datame test 「CVU dml_eainchwfinoc	III Useral (DM Theory, Alsoftware), Alsoftware), Alsoftware, Alsoftware, Alsoftware, Alsoftware), Alsoftware), Alsoftware, Als	 (第2812)データ _xeh (*) (*)	5R

_treescore をロードします。

			データのロード
4	a)	0.4584	я
TEST DATA SAMPJOATA	₽.		(BEACONTA) Brane a - Catherentin Management and an Shar (Shara a

Data Mine Tech Ltd. Data Bring New Insight to Your Business 3 実行例 3.1 (例1)優良顧客の判別

ターゲット変数 に flg 、**ターゲット値**に 1 、予測変数 名 に _CONF をセットします。

DMT_GAINCHART 撤定画面
ゲインチャート・収益チャート
入力を持ん(nobin) 入力を分(feeders) ショットの ショットは((notin) ショットは((notin)) クークト クークトは((notin)) クークト
表示为(/ AL ((the)
(土式つ-K) 座標値出力データ son
splore and miles. Johanne Henry Calendra, Henrocore v Tweeter TPE (EPP-LdevidE ar yoth Standauer JAPANESE angh, landauer EHXLISH)
nの内 表示するデータ特徴の上級 10 v マー実験りついの表示 マー値りついの表示 10%の面面に表示
↓ ↓
DMT_GAINCHART 指定画面
ゲインチャート・収益チャート
ガラス酸植物open) ● ダビタマート ○ 9005年ート ○ 80世5年ート 1 17500 と参照日 1 17500 と 1 17500 1
ADD/01/5-01/000/ 国家のからない 国家のからない 国家のからない 国家のからない ADD/01/2000 A

ゲインチャート・収益チャート スカデー30440 シージス税(40) ビビレーシーン(10) 税税(50) ビビレーシーン(10) 税税(50) ビビレーシーン(10) ビビレーシーン(10) ビビレーシーン(10) ビビレーシーン(10) ビビレーシーシーン(10) ビビレーシーン(10) ビビレーシー>(10)		DMT_GAINCHART 指定画面	
λ.77:64 (weake) λ.77:64 (weake) 3-7:74 (weake		ゲインチャート・収益チャート	
λλ75-7-0400) Bernard 3-77/32 (Goard) Bernard 10/7 Bernard Bernard 11/7 Goard Bernard 11/7 Bernard	入力モデル (model=)	入力検証モデル (test=)	
	入力データ(data=) _treescore		
- クリンス酸 (c) 「* ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	where角件	0	
	ターグット実数(y=) tig 予測実験な(preds)	ターガット値 (target=) (シリア) カループ2(集計	3
	1 Million Approach	 ● なし 	
2720日間の中の 2月20日間の中の まだけらりのか まだけらりのか まだけらりのか まだけらりのか またたけらのか またたけらのか またたけらのか またたけらのか またたけらのか またたけらのか たたしままたいためで、 たいためで、 たいためで、 たいためで、 たいたかで、 たいためで、 たいためで、 たいたかで、 たいたかで、 たいたかで、 たいためで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいためで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいためで、 たいためで、 たいためで、 たいたかで、 たいためで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで、 たいたかで		 ランク分類(ercopnume) マーマングクス(ercopnume) 	
	グラフの種類(type=)	() (Kättieroupvar=)	
RED/16 0000 RED/17-1 RED/17-2 RED RED/16 0000 R 2014 RED/17-2 RED RED/16 0000 R 2014 RED/16 VENUE FOULDED D/1 CALCULART INCOME D/1 CALCULART INC	● ゲインチャート ○ ROOチャ	-ト ○ 収益チャート	
##3/1/s Ones) ###2577-7 jan (BAC)-17 ###2577-7 jan (Demond the "Classed Network":			
またりたり (main concerning and address years of the second			
	表示タイトル (title=)		
The Define Section The Define Sec	生成コード]	准備提出リテータ _gam	
Non-Ref and a detailed and a version of the company of t	options notinterr; libname library (data);	smp_data+datas_reescore ;	
1071 新市市シテークHHADLER 11 ○ 文林市シニムの表示 11++ の範疇に表示 第2 1071 DMT_GAINCHART 新定無期 グロンクチャート・いいのエテート シンク用語ビデオ・レート シンク語をいった シンク用語ビデオ・レート シンク用語ビデオ・レート シンク語をいった シンク用語ビデオ・レート シンク用語ビデオ・レート シンク活動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ndmt_gainchart(data=data_trees .TP=1,FP=-1,dev=GIF,ar_roc1=5.8	;ore,y=flg,tanget= Janguage=JAPANESE,graph_language=ENGLISH0	
(2)2 単元 15 2			
(D2) 単市すちダーシ9年後のしまま ① ① 第二年の公式の表示 ○ 第二の公式の表示 ○ 第二の公式の表示 ○ 第二の公式の表示 ○<			=
DMT_GAINCHART 間定無間 C/125Fヤート・収益チャート スク度電からし スクタート・収益チャート スク度電子ケート スの度電子ケート スの度	[ログ] 表示するデータ件数の上昇	10 v 変数ラベルの表示 v 値ラベルの表示 別々の画面に表示	
CATHCHART 単正曲面 CATHCHART 単正面面 CATHCHART ● CAT			
Controller 副正義語 Controller 副正義語言 Controller 副正義語言 Controller 副正義語言 Controller 副正義語言 Controller 副正義語言 Controller 副正義語言 Controller Controler			
CMT_GAINCHART 前正確範 CAINCHART 前正確 CAINCHART 前正 CAINCHART CAI			
CMT_GAINCHART III正施施 DMT_GAINCHART III正施施 D/1/25 (note) C/27/82 (not			
DMT_GAINCHART 新定集画 スクラ度 2000 (1990) パインテヤート・収益チャート スクラ度 2000 (1990) スカデジ(1404) >>>>>>>>>>>>>>>>>>>>>>>>>>>>		\downarrow	
ガインチャート・収益チャート 入力度低化分析 人力度低化分析 人力度低化分析 人力度低化分析 人力 入力度低化分析 人力力度低化分析 人力力度低化分析 人力力 人力力 人力力 人力力 人力力 人力 人力力 人力 人力力 人力力 人力 人力 人力力 人力力 人力力 人力力 人力 人力 人力 人力力 人力 人力 人力 人力 人力 人力 人力 人力		DMT CAINCHADT 將定面面	
グインナヤート・リ収益チャート 入力結果(web) 入力だ方(mode) 入力結果(web) 小力・分(stel) ション 小力を活動(web) ション ション ション </th <th></th> <th></th> <th></th>			
		ケインナャート・収益ナャート	人力指定のリゼット
入力デジタ(44) 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	入力モデル (model=)		
the set of the	入力データ (data=) _treescore		
	where \$4	No. Mind off (accession) in the	
	メーリットactit (y=) 18 予測実数名(pred=)	- 5-75712 (target-) 1 -	
25225程度のpech 25225程度のpech 25225程度のpech 25255程度のpech 25255程度のpech 25255程度のpech 25255程度のpech 252552程度のpech 252552程度のpech 252552程度のpech 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 2525524 252552 252552 252552 252552 252552 252552 252552 25255 25255 25255 25255 25255 2525 2525 2525 2525 2525 2525 2525 2525 252 25	1	Ja 🛛 🖌	
		 ランク分類(grouprum=) (第15) 	
 ● デイ:チャート ○ ROCF+ート ○ 初田チャート ● ボイ:チャート ○ ROCF+ート ○ 和田子+ート ● 花(大)-ト) 日本 ● 花(大)-ト) 日本	グラフの種類(type=)	C Xemprodywa-)	
表示分()-5 (ctars) (注成二→1) 原示意意://TFT-5 j.son Stress data ("CitizerNOTFicesang.databada freecours": antros antros protection and the stress of the stre	● ゲインチャート ○ ROOチャ	-ト ○ 収益チャート	
第月か(5.6 (citure) 目前のコード (Site Site Site Site Site Site Site Site			
表示が154.05m0) 電気法257-57 国際の中のは、150-05 国際の中のは、150-05 第200-05			
表示からしたら (Star) (国気ント) (国気ント) (国気ント) (国気ント) (国本のはから) (Marcand day "Chlorent Off France, diabided by Section": (Marcand day "Chlorent") (Marcand day "Chlorent") (Mar			
28月21日): 第日第日日から、 18月2日): 第日第日日から、 18月2日): 10日 18月2日から、 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月2日から 18月20日から	表示タイトル (title=)		
18mane dag (2010er#001178amg.dashdad yeecoor) 18mane dag (2010er#001178amg.dashdad yeecoor) 18mane 18map (2010er#0118amg.dashdad yeecoor) 19mane 18map (2010er#0118amg.dashdad yeecoor) 19mane 19map (2010er#0118amg.dashdad yeecoor) 19map (2010er#018amg.dashdad yeecoor) 19map (2010er#018amg.dashdad yeecoor) 19map (2010er#	[生成コード]	座標億出力データ _gain	
manes markey source and a hyperon curlicit speet " " コービアドー 1der-01 Par joint 3 languages JAPANESE and hyperase=ENGLESH 回力 表示するテージ時後の上版 10 v 必支税3-5%の参示 21億5%の参示 15%の適応表示 第2	libname data "CNUsers#DMT#s options nofmten;	amp_data¥data¥_treescore*;	
D27 表示す27-59H30.2版 10	libname library (data); %dmt_painchart(data=data_trees) TD=1.ER=_1.deu=GIE ar conte5.9	core_y=fig_target="1"	
D27] 表示す25-5州和の上間 10 v 文式第5へらの表示 文曲5へらの表示 二別×の補助に表示 開る		entereter om minstellande jentereter og	
回り 表示するデーが特徴の上版 10 V 文献らべいの表示 2 値らべいの表示 11 0 原る		~	
	「ログコ」表示するデータ件数の上昇	10 マ 実数ラベルの表示 ▼ 値ラベルの表示 □ 別々の画面に表示	戻る
↓		↓	
↓ DMT_GAINCHART 甜定满面		↓ DMT_GAINCHART 部定画画	_
↓ DMT_GAINCHART 部定画面 ゲインチャート・収益チャート		↓ DMT_GAINCMART 部次海南 ゲインチャート・収益チャート	_
↓ DMT_GAINCHART 部ル市用 ゲインチャート・収益チャート	3.7255 (andri)	↓ DMT_GAINCHART 開ぶ画画 ゲインチャート・収益チャート	
↓ DMT_GAINCHART 期定画面 ゲインチャート・収益チャート λフカテデ/(data) スフカ8∐モク% (tran)	入力モデル (modeli) 入力モデル (modeli)	↓ DMT_GAINCHART 前定画面 ゲインチャート・収益チャート ^{入フ防圧在デル (unit)}	

venreiN venshuN kingakuN

戻る

			アインナヤ	ァート・収益ナヤ・	
A	入力モデル (model=) 入力データ (data=)	_treescore		入力検証モデル(test=))
	venereimi+ ターゲット変数 (v=)	tle	_	ターゲット(首 (tareet=) ^^ 1	9
_	予測実動名(pred=)		3870 N	グループ別集計	
入力指定のパセット	- グラフの種類(type=) ● ダインチャート	○ R00##~ト ○	√ ₩₩54-1	 なし ラン疗策(erouprume) 支班(groupvare) 	
	表示少(トル (title=) 住L成二一ド] Ibhame data "CNU options nofmers: Ibhame Ibrary (data Ximt gainchartidata TPFIFP=1 day=08	ers¥DMT¥samp_data¥)), data_treescore.v=file;	座標個出 data¥_treescore": larget="1" JAPANESEgraph I	ゴカデータ (gain Innuare=ENGLISH)	^
	ログ] 表示するデー	が井敬の上禄 10	マ マ 支助	うへんの表示 🕑 値うへんの表示	刻々0画面2表示
5					

グラフの種類 を 収益チャート に変更します。

 \downarrow

DMT_GAINCHART 指定画面

ゲインチャート・収益チャート

スプリビデル (weeke)
 スプリビデル (weeke)
 スプリー マル エレ マ マ T
 スプリー マル エレ マ マ
 スプリー
 スプリー マル エレ マ マ
 スプリー
 スプリー

[0グ] 表示するデーが特徴の上級 10 v マ 実験シベルの表示 マ 値シベルの表示 10 % の画面に表示

表示からした(Inter-) 国際の取る人でいたのでのでは、 国際の取る人でしたのが見れていたので、 国際の取る人でしたのが見れていたので、 したのかから、ためやいたので、 したのかから、ためやいたので、 したり、ことで、 したり、 しり、 したり、 したり、 したり、 しり、 し

		DMT_GAINCHART 指定	100 (A)	
	ゲ	インチャート・収益チャ	r-1	入力指定のリセット
入力モデル (modeli) 入力データ (datac) where最終 ターゲット支数 (y=) 子供支数名(pred=) 	_treescore fig ROCチャート ● 取り ゆ ● ターゲット出現中20			
出現する判断が正し、 出現する判断が限例の 表示かイトル(title) (注成コード) libname data "CVUs options normer: libname library (data profest CVUs Mint ganchart data profest POINTITI-11 AppenDER DOINTITI-11	 ケーゲット出現平の1 場合の収入単価(FPo) 場合の収入単価(FPo) 場合の根決単価(FPo) ers¥DMT¥samp_data¥data ,), ,)	私/方庁/2歳代し、遺紀元はカーグラト所任現した。 ※ 値 1 ○ 実験 ※ 値 1 ○ 実験 承環論出力データ PROFIT 	·之中解: 	83入単値(プラス値)を入力 現先単値(マイテス値)を入力
[07] 表示するデー	5件数の上環 [10 ♥]	着のいた意味 王 赤のいたと説え 王	示 □ 別々の適面に表示	東 行 页5

今回は、購入することを期待して出現率(購入率)が高 い方から施策実施対象を選択するので、ターゲット出現率 の高い方から選択の設定のままにしておきます。

収益チャートのパラメータ ・ターゲット出現率の高い方から選択し、選択先はターゲットが出現すると判断 ・ゲット出現率の低い方から選択し、選択先はターゲットが出現しないと判断

購入するだろうという判断が正しかった場合の施策実 施顧客からの収益は、購入実績金額(変数 kingaku)を 選択します。

出現する判断が正しい場合の収入単価 (TP=) 出現する判断が続いの場合の損失単価 (FP=)	○値 ●値 -1	Hen .	Ŗ	個々の収入額(正の値)を持つ実数を指定 損失単価(マイナス値)を入力
		Ļ		

四月 赤元するデーが特徴の上線 10 🗸 文法シベルの表示 🕑 値タベルの表示 🗐 約 の画面に表示 第月

Data Bring New Insight to Your Business 3 実行例 3.2 (例 2) 施策実施効果の分析

収益チャート の横軸は予測出現率の大きい順に終端ノードを並べ たときの累積件数(施策選択対象件数)を表し、縦軸はその累積件 数から得られる合計収益額を表します。

図の左端の点は施策実行対象を全く選択しなかった場合を表し、 常に収益=0 となります。一方、図の右端の点は全部のノード(全 員)を選択した場合を表し、どのモデルを用いても同じ値になり ます。(値は収益とコストの関係で決まります。負の値になる場 合もあります。)図から、出現率の大きい方から5個の終端ノー ドまでを施策実施対象として選択した場合に最大収益が得ら れることがわかります。(実施対象件数 810 件、期待収益額 168,130)

このように、実務的な収益の観点から最適な施策実施対象を定義 することが可能です。

なお、456件の購入あり顧客のみを施策実施対象として選択する 完全モデルの収益額は197,839です。一方、ランダムモデル(あ てずっぽうモデル) を使う場合は、全員を施策実施対象とする 場合が最大収益が得られ、収益額は120,639となります。

3.2 (例 2)施策実施効果の分析

施策効果が大きい/小さい顧客の判別ルールを作成します。目的 変数はクラス変数 fg、購入確率を求めたいクラスは fg=1 (購入 あり)で、施策実施 / 非実施のデータ区分は、変数 DM の値 (実 施: DM="1", 非実施: DM="0")で識別されています。

以下の分析手順を実行します。

3.2.1 データ読込

分析に用いるデータ(SAMP_DATA)とモデル検証に用いるデ ータ(TEST_DATA)は3.1.1 で既に読み込まれています。

3.2.2 ラベル付与

SAMP_DATA には 3.1.2 で既に変数と文字変数値にラベルが付けられています。

3.2.3 項目分析

デシジョンツリーモデル作成前の事前分析として、説明変数とタ ーゲット変数との関連性や説明変数分布の把握を行います。

Data Bring New Insight to Your Business

クロス分析 を押します

を押します。「クロス分析」 画面が前回指定した

パラメータが指定された状態で開きます。

where 条件 _____ を押し、SAMP_DATA の中で、変数 DM の 値が "1" の条件を満たすオブザベーションを施策実施データと して入力するよう指定します。

対照データ _____ を押します。

		DMT_CROSS 指定	画面	
		クロス分析		入力指定のリセット
入力データ(+data= 対照テック(control) ターゲット支数(+y=) 提明支数(+y=) 提明支数(+y=) トロン(+y=) クロスレベル(cross) クロスレベル(cross) クロスレベル(cross) とカンのス素ポテー 出力AIC統計量デー (生成コード) Honame data "04) Bhoname cross (- Air ArteSE) XMM cross(data= XmM cross(data= X	Patria drawia Patria drawia Patria drawia Patria Patria			₂ v (1 ⁴
表示 [[] ⑦] 注意: outcross=_6	するデータ件数の上限 cross 指定した結果データ	 ② 実数5ペルの表示 ③ 引々の適面に表示 シャドは存在します。実行すると上書きされます 	億5ペルの表示 実行	<u>第</u> 3 美元 戻る
				<u> </u>

SAMP_DATA をロードします。

47 / 215

where 条件 _____ を押し、SAMP_DATA の中で、変数 DM の 値が "0" の条件を満たすオブザベーションを対照 (施策非実 施) データとして入力するよう指定します。

where条件 DM	= 🗸 " 1"
where条件	セットN
ターゲット値(target=) [《] 1 [《]	м3
usaki gyoshu shokushu 🔺	ABC順に並べ替え
×	1 sei C 性別
0	2 nenrei N 年前 3 jukyo C 住居
 DAIC值其维 (crossaic=)	4 kazoku_kosei C 家族構成 5 gakureki C 最終学歴
//htolle本中 (crossaic-/	6 kinmusaki C 勤務先形態 7 gyoshu C 業種
データ (opically picall)	8 shokua 0 余曜 8 shokua C 集隆種
F =∞ (oaicaii=jaicaii)	9 nensnu N 年4X 10 DM C プロモーション
	12 kingaku N 購入金額 [ケリマ]
_DATA"; iss";	•
MP_DATA";	
TA,y=flg,target="1"	
Il=cross_aicall,print=N,language=J	
	1
	\downarrow
where冬件 DM = 、	" 1"
where条件 DM =	
·値 (target=) ‴ 1″	
	\downarrow
where条件 DM =	v ″ 1″
where条件 DM =	v t2>h
ターゲット値(target=) ~1~	5
saki gyoshu shokushu	
ן [קעל]	2
	\downarrow
表示 where条件 DM =	v ‴1″
+	" 0"

出カクロス集計データ を _cross2 に変更します。

			ク	ロス分析			λ:	り指定のりセッ	۷ŀ
入力データ (*data:	=)	SAMP_DATA	-	表示 where \$	eff DM		v "1"		
対照データ (contro	i=)	SAMP_DATA		表示where象	e件 DM	=	v ~0*		
ターゲット変数(*y=	:)	flg		ターゲット値 (tare	et=) "1"				
脱明麦数 (*x=)	sei	nenreijukyokazoku_ shu DM	kosei gakureki	kin musaki gyoshu sh	okushu 🔿				
除外する説明変数 (dropx=)					÷	-			
クロスレベル (cross	lv⊫)	I 0 2	クロスレ	ベル2のAIC信基準 (cn	ossaic=)				
出力クロス集計デー	-タ (or	utcross=) _cross2							
出力AIC統計量デ	-タ(outaic=_aic)	出力全AIC移	稔計量データ(oaical⊫_i	aicall)				
[生成コード]			2						
Kdmt_cross(data=	iata); :data:	SAMP_DATA(where=	(DM=" 1")).con!	trol=controlSAMP_DA	TA(where=				
Kdmt cross(data (DM="0")),labeld x=sei nenrei juky outcross-cross JAPANESE 表行 [ログ]	lata): =data) at=da vo kaz cross	SAMP_DATA(where= taSAMP_DATAy=fig coku_kosei gakureki 1 2.outfmt=cross_fmt,c データ件数の上跟 1	(DM="1")).com target="1" inmusaki gyos utaic=cross_ai	trol=controlSAMP_DA thu shokushu nenshu ic.oaicall=cross_aicall	TA(where= DM print=N.language= マ値ラベルの表	▼ 示 実行		前回表示	戻る
Kdmt_cross(data- (DM="0")).labeld 	iata); =data) at=da cross cross cross	SAMP_DATA(where= ta_SAMP_DATA)=fite ta_SAMP_DATA)=fite could use a set of the set of the set of the 2 outfint=cross_fint.c データ件数の上録 1 s 指定した結果データ	(DM=*1*)).com target=*1* inmusaki gyos utaic=cross_ai 0 マ 2ットは存在しま*	trol=controlSAMP_DA hu shokushu nenshu icoaicall=cross_aicall マ 実験ラベンルの表示 D 別々の画面に表示 す。実行すると上書きざい	TA(where= DM print=N,language= で値ラベルの表 、 れます!	▼ 示 実行		前回表示	戻る
Wint cross(dates (DM="0")).labeld x=sei nerrei ルk; .outorosscross. JAPANESE (ログ) 注意: outcross=,	lata): =data) at=da /o kaz cross 元する:	SAMP_DATA(where= ta_SAMP_DATA)=fite cotk_locseigadureki 2:outfmt=cross_fmt,c データ件数の上課 1 s 指定した結果データ付	(DM=*1*)).com target=*1 inmusaki gyos utaic=cross_ai 0 マ 2ットは存在しま*	ectorian John P_DA trol=controlSAMP_DA hu shokubu menshu ic.aaicall=cross_aicall マ 実験ラベルの表示 □ 別々の画面に表示 す。実行すると上書きさ	TA(where= DM print=Nlanguage= ② 値ラベルの表 ; こます!	。 示 実行 人		前回表示	戻る
Ximt cross(dates (DM=*0*)).labeki (DM=*0*)).labeki xseinenrei JAK outcross=cross JAPANESE 表行 (Dグ) 注意: outcross=,	lata); =data; at=da cross たする	SAMP DATA(where- ta SAMP DATA/where- ta SAMP DATA/star galaries and the same star control and the same same same same same same same sam	(DM="1")).com target="1" immusaki gyos utaic=cross_ai 0 マ 2ットは存在しま	etonim John SAMP_DA htu shokushu nenshu icoaicalleross_aicall ✓ 実話ラベルの表示 □ 別々の画面に表示 す。実行すると上書きざい	TA(where= DM print=Nlanguage= マ 値ラベルの表 します!	▼ 示 実行		前回表示	戻る
Xdmt cross(datas (OM=*0').labeld メ=sei nerrei JAA JAPANESE 表行 [ログ] 注意: outcross=	lata); idata; at=da cross 戻する;	SAMP_DATA(wherea ta SAMP_DATA/sthe ta SAMPAL 20ut/Imt=cross_fmt, データ件数の上限 1 5 指定した結果データH	(DM="1")).com target="1" immusaki gyos utaic=cross_ai 0 マ 2ットは存在しま	itrol=controlSAMP_DA trol=controlSAMP_DA にoaicall=cross_aicall マ 実験うべいの表示 」 別々の画面に表示 す。実行すると上書きざ	TA(where= DM print=Nlanguage= マ 値ラベルの表 します!	▼ 示 実行 ↓		前回表示	戻る
Ximt cross(datas (OM=*0).labeld メニsei nerrei JAA JAPANESE 表行 [Dグ] 注意: outcross=	iata); idata] at=da ro kaz cross	SAMP DATA(where to SAMP DATA(where to SAMP DATA(where 2000 / more gate 2000 / more gate データ件数の上環 データ件数の上環 1 か 指定した結果データ	(DM=*'I*)).conit target='I' inmuski gyos utaic=cross_ai 0 マ 2ットは存在しま	enterna (victoria) SAMP DA hu shokushu nenshu coalcall=cross_aicall 「文数3へいの表示 」別々の画面に表示 す。実行すると上書さざ	TA(where= DM print=N.language= マ 値ラベルの表 : 1ます!	▼ 示 実行 ☆		前回表示	戻る
Xidm (cross)Gatase (OM= 70).Jabeld メニsei nerrei Juk JAPANESE まう [ログ] 注意: outcross=	iata); idata]; at=da cross 定ross cross	SAMP_DATAKwhero= ta SAMP_DATAkwhero ta SAMP_DATAkwhero 20ut/miteross_imit データ件数の上環 1 データ件数の上環 1	(DM ⁴⁺)("))con target=") utarget=") utaic=cross_ai 0 v 2%FG存在Lま:	elocana (JAMP_DA hu shokushu nenshu c.oaicall=cross_aicall 「文変動うべいの表示 」別々の画面に表示 す。実行すると上書さざ	TA/where= DM print=Nlanguage= 「値ラベルの表 i	▼ 示 実行 ↓		前回表示	戻る
Xdmt_cross(dates (OM="0").labeld x=sei nerrei luk JAPANESE 页 [07] 注意: outcross=,	iata); idata); at=da ro kaz cross cross 	SAMP DATA/wtrgs ISSAMP DATA/wtrg ISSAMP DATA/wtrg ISSAMP DATA/wtrg Zauthmicross_Imic データ件数の上限 1 第定した#品果データイ	(DM4*'1'))coni target=1 utais=ores_ai 0 マン	evenimi (Control SAMP, DA hu sholudhu nenshu coaisall=ross, aicall マ 変統テベルの表示 BI々の画面に表示 す。実行すると上書きさい	TA(where= DM print=N.language= マ 値ラベルの表 う します!	、 示 実行 入		前回表示	戻る

実行 を押します。

Data Bring New Insight to Your Business 3 実行例 3.2 (例 2) 施策実施効果の分析

	amp_data¥html¥temp	#dmt_cross_201702	13_162317¥CRO	SS_CROSSTAB.html								÷	708
DMTC	ROSS 分析結	実・分析デー	タヤットの	1. SAMP DATA	where=(DM='1')) /	ターゲット・f	la='1' 対照テ	-97%	FICI: SA		vhere=(DM=	·(('0')
			[D]-(C)出現率の	[D]-{C]出現率の差の標準	[D] トータル	[D]ターケット	[D]ターゲット再現 実み	[D]ターグット出現 第94	(C) トータル#	[C]ターゲット	 [C]ターゲット再現 第04	[C]ターゲット出現 第04	個別
AIC(值 3)	2.99家 34	値	E 70	BATE TO	TTSA	TTSK	-#-70	470	A8	TTEN	+10	+10	
. (A	ANY}	(ALL)	11.38	2.03	619	190	100.00	30.69	1,381	267	100.00	19.33	
· DI	M プロモーション	0 非実施							1,381	267	100.00	19.33	
		1 実施			619	190	100.00	30.69					
-42.9607 St	白性別	1 男性	-1.67	2.51	344	64	33.68	18.60	947	192	71.91	20.27	-19
		2女性	28.54	3.47	275	128	66.32	45.82	434	75	28.09	17.28	-21
-39.2879 JI	UKYO 住居	不明	18.18	12.67	22	11	5.79	50.00	44	14	5.24	31.82	1.62
		1 持家(自己所有)	10.93	2.05	124	14	7.37	11.29	276	1	0.37	0.38	-21
		2 持奈(家族所有)	10.10	2.50	75	8	4.21	10.67	176	1	0.37	0.57	-9.6
		3 賃貸マンション	6.03	6.17	101	50	26.32	49.50	184	80	29.96	43.48	-0.3
		4 借奈	14.44	5.39	121	62	32.63	51.24	269	99	37.08	36.80	1.63
		5アパート	8.60	6.89	68	30	15.79	44.12	183	65	24.34	35.52	0.94
		6寮	17.39	5.21	23	4	2.11	17.39	61	0	0.00	0.00	-8.5
		7社宅	9.22	3.24	85	11	5.79	12.94	188	7	2.62	3.72	-0.7
-35.9479 G	AKUREKI 最終学歴	不明			3	0	0.00	0.00					
		1 中学	39.13	5.43	139	105	55.26	75.54	217	79	29.59	38.41	-18
		2高校	1.89	3.53	221	58	30.53	28.24	468	114	42.70	24.38	-6.0
		3専門学校	5.22	2.86	145	19	10.00	13.10	368	29	10.86	7.88	1.88
		4大学	-2.24	3.77	73	5	2.63	6.85	220	20	7.49	9.09	-2.0
		5大学院	- 15.25	7.43	38	3	1.58	7.89	108	25	9.36	23.15	-9.7
-2.2928 G	YOSHU 業種	不明	13.73	3.79	168	53	27.89	31.55	404	72	26.97	17.82	1.34
		A農林水産	18.45	9.88	27	10	5.26	37.04	68	14	5.24	20.59	1.60
		日飯業	48.77	12.31	14	7	3.68	50.00	31	1	0.37	3.23	-9.2
		C建設・土木業	-0.75	9.22	30	6	3.18	20.00	53	11	4.12	20.75	0.31
		D 製造	4.07	7.61	50	15	7.89	30.00	108	28	10.49	25.93	0.54
		E電気・ガス・水 道	38.49	13.86	12	6	3.16	50.00	37	5	1.87	13.51	-1.1
		E 3840 - 384	13.64	8.55	42	14	7.37	33.33	66	13	4.87	19.70	1.76
		「漫観・湖南	18.22	4.98	111	41	21.68	36.94	251	52	19.48	20.72	1 17
		U de 21 - 1752	18.67	44.72	2	1	0.53	50.00	3	1	0.37	33.33	170
		1753	8.61	10.83	16	4	211	25.00	61	10	375	16.39	178
		1.4=1	6.34	984	33	9	474	27.27	43		3.37	20.93	1.5
		K (E 192 - 262a)	-16.62	15.05	13	2	1.05	15.38	25	8	3.00	32.00	-1
		The person of the law				-							
		レズの修計ードフ	-3.51	8.52	39	9	4.74	23.08	79	21	7.87	26.58	-1.4
		L その他サービス M 公務	-3.51 6.49	8.52	39	9	4.74	23.08	79 152	21	7.87	26.58	-1.4
ers¥DMT¥sa	amp_data¥html¥temp	L その他サービス M 公務 ¥dmt_cross_201702	-3.51 6.49 13_162317¥CRO	8.52 5.57 SS_CROSSTAB.html	39 62	9 13 表示	4.74	23.08 20.97	79 162	21 22	787 824	20.58	-1.4 1.64
ərs¥DMT¥sə -0.64378 Şı	amp_data¥html¥temp HOKUSHU 腹種	L その他サービス M 公務 ¥dmt_cross_201702 不明	-3.61 6.49 13_162317¥CRO 3.70	8.52 5.57 SS_CROSSTAB.html 5.95	39 62 63	9 13 表示	4.74 6.84 7.89	23.08 20.97 23.81	79 152 184	21 22 37	787 824	20.58 14.47 20.11	-1.4 1.64 v 70
ers¥DMT¥sa -0.64378 ge	amp_data¥html¥temp HOKUSHU 酸緬	L その他サービス M 公務 ¥dmt_cross_201702 不明 1 宮葉	-3.51 6.49 13_162317¥CRO 3.70 2.57 9.44	8.52 5.57 SS_CROSSTAB.html 5.95 6.61	39 62 63 63 63	9 13 表示 15 11	474 684 7.89 6.79 10.00	23.08 20.97 23.81 17.48	79 162 184 184 141	21 22 37 21	7.87 8.24 13.80 7.87 11.99	26.58 14.47 20.11 14.85 22.22	-1.4 1.64 v 70: 1 0.4 9 0.6 2 1.6
ers¥DMT¥sa -0.64378 se	amp_data¥html¥temp HOKUSHU 酸種	L その他サービス M 公務 Wdmt_cross_201702 不明 1 営業 2 販売 2 販売	-3.51 6.49 13_162317#CRO 3.70 2.57 9.44 27 61	8.52 5.57 SS_CROSSTAB.html 5.95 6.51 6.65 6.75	39 62 63 63 63 63 60	9 13 表示 16 11 19	4.74 6.84 7.89 6.79 10.00 24.74	23.08 20.97 23.81 17.46 31.67 46.08	79 162 184 184 141 144	21 22 37 21 32 29	7.87 8.24 13.86 7.87 11.99	20.58 14.47 20.11 14.85 22.22 18.47	-1.4 1.64 v 70: 1 0.4 9 0.6 2 1.6 7 .5
ers¥DMT¥sa -0.64378 ge	əmp_dətə¥html¥temp HOKUSHU 腹種	L その他サービス M 公務 Wdmt_cross_201702 不明 1 営業 2 販売 3 超営・管理 4 かま・注意	-3.51 6.49 13_162317#CRO 3.70 2.57 9.44 27.61 13.31	8.52 5.57 SS_CROSSTAB.html 5.95 6.61 6.65 6.79 4.42	39 62 63 63 63 60 102 122	9 13 表示 15 11 11 18 47 38	4,74 6,84 7,89 5,79 10,00 24,74 20,00	23.08 20.97 23.81 17.46 31.67 48.08 30.89	79 152 184 141 144 157 290	21 22 37 21 32 29 51	7.87 8.24 13.80 7.87 11.99 10.88 19.10	26.58 14.47 20.11 14.85 22.22 18.47 17.55	-1.4 1.64 70 0.6 2 1.6 7 -5. 9 1.
ars¥DMT¥sa	amp_data¥htmi¥temp ноки sни 8 #	L その他サービス M 公務 Wdmt_cross_201702 不明 1 宮葉 2 販売 3 経営・管理 4 介葉・清師 5 オペレータ・運転 4	-3.51 6.49 13_162317¥CRO 3.70 2.57 9.44 27.61 13.31 1.55	8.62 8.67 SS_OROSSTAB.html 8.96 8.61 8.66 8.79 4.42 4.87	39 62 63 63 63 60 102 123 87	9 13 表示 15 11 19 47 38 16	474 884 7.88 8.79 10.00 24.74 20.00 8.42	23.08 20.97 23.81 17.46 31.67 48.08 30.89 18.39	79 152 184 141 144 157 290 198	21 22 37 21 32 28 51 33	7 87 8 24 1380 7 87 1199 10 80 19 10 9 10 23	26.88 14.47 20.11 14.85 22.22 18.47 17.55 16.84	-1.4 1.84 7 70 1 0.4 9 0.8 2 1.8 7 -5. 9 1. 8 -0.
ers¥DMT¥saa	amp_data¥htmi¥temp Hoku S+U QM	L その他サービス M 公務 不明 1 宮原 2 販売 3 超空 ・管理 4 作業・満勝 5 オペレータ・運転 手 5 電路	-3.51 6.49 13_162317#CRO 3.70 2.57 9.44 27.61 13.31 1.56 11.00	8.52 557 53_CROSSTABHIMI 5.55 5.51 6.65 5.79 4.42 4.87 4.87 5.91	39 62 63 63 63 60 102 123 87 87 88	9 13 13 15 15 11 19 47 38 16	4,74 0,84 7,88 8,79 10,00 2,474 20,00 8,42 10,84	23.08 20.97 23.81 17.46 31.67 48.08 30.89 18.39	79 152 184 184 141 144 157 290 196 196	21 22 37 21 32 28 51 33 33	787 824 1386 787 1199 1086 1910 1236	26.58 14.47 20.11 14.85 22.22 18.47 17.55 18.84 18.84 18.84	-1.4 1.64 70 1 0.4 9 0.6 2 1.6 7 -5. 9 1. 8 -0. 5 1.6
ars¥DMT¥sa	amp_data¥html¥temp нокизни ве	L その些サービス M 公務 Widmt_cross_201702 不明 1 営業 2 販売 3 超宮・管理 4 作業・清掃 5 オペレータ・運転 手 6 運路 7 授編・サポート	-3.51 6.49 13_162317#CRO 3.70 2.57 9.44 2.761 13.31 1.55 11.00 11.00	8.62 6.57 SS_CROSSTABItml 6.95 6.65 6.65 8.79 4.42 4.67 4.67 6.91 8.62	39 62 63 63 63 63 63 63 60 102 123 87 68 63 85 85 85 85 85	9 13 表示 16 111 19 47 38 16 12	4,74 6,84 7,89 6,77 10,00 2,474 20,00 8,42 10,84 0,32	23.06 20.97 23.81 17.45 31.67 46.66 30.89 18.39 37.21 34.29	79 182 184 184 141 144 157 290 198 198 195 74	21 22 37 21 32 28 61 33 39 61	787 824 1386 787 1199 1086 1910 1228 1910	26.88 14.47 20.11 14.85 22.22 18.87 17.55 18.84 18.84 18.84 17.57	-1.4 1.64 7 70 0.4 0.6 2 1.6 7 -5. 9 1. 4 -0. 5 1.6 7 1.4
-0.64378 g	amp_data¥htmi¥temp HOKU SKU 製種 ACKU, KOSE 東海道	L その他サービス M 公務 W 小町_cross_201702 不明 1 写業 2 販売 3 好宮・管理 4 介重・清掃 5 オペレーク・運転 子 5 課題 7 技術・サポート 不明 不明 4 小二ト	-3.51 6.49 13_162317#CRO 2.57 9.44 27.61 13.31 1.55 11.00 116.72 22.83	8.82 8.67 SS_CROSSTABHmil 8.95 8.61 8.65 4.42 4.87 8.91 8.92 1.427 1.427	39 62 63 63 63 63 60 102 123 87 68 65 55 14	9 13 末天 18 18 11 11 19 47 38 38 16 38 16 38 12 12 7 7	4,74 0,84 7,89 6,79 10,00 2,474 20,00 8,42 10,84 0,842 10,84 0,842 3,68	23.08 20.97 23.81 17.46 31.67 46.66 30.99 18.39 37.21 37.21 37.23	79 162 184 184 141 144 157 280 196 196 196 74 34	21 22 37 21 22 23 24 51 51 51 13 8 8	787 824 1386 787 1199 1086 1910 1238 1910 1238 1910 1487 333	26.58 14.47 20.11 14.85 22.22 18.47 17.55 26.15 26.15 26.47	-1.4 1.84 70 0.8 0.8 0.8 1.0 7.5 0.1 1.0 5.1.0 7.1.4 7.1.3
4.775013 K	amp_data¥htmi¥temp HOKU SHU 製種 AZOKU_KO SEI 東島構	L その他サービス M 公務 W 小町 cross_201702 不明 1 営業 2 販売 3 経営・管理 4 介堂・浅緑 5 オペレータ・運転 子 6 要務 7 技術・サポート・ 不明 1 登別月間表表あの	-3.51 6.49 13_162317#CRO 2.67 9.44 2.761 13.31 1.55 11.00 16.72 2.53 11.13	8.82 657 SS_CROSSTABhtml 596 666 679 487 487 487 487 487 487 364	39 62 63 63 63 60 102 122 87 88 88 38 35 14	9 13 表示 18 18 18 18 18 19 19 19 10 10 10 10 10 17 7 7 7 7 7	4.74 6.84 7.89 8.79 10.00 24.77 20.00 8.42 10.84 6.32 3.68 4.105	23.06 20.97 23.81 17.40 31.67 46.06 30.89 37.21 34.29 37.21 34.29 60.00 35.29	79 182 184 184 141 144 187 186 196 196 196 196 34 478	21 22 33 23 23 25 61 33 33 61 13 25 61 33 61 13 13 11 11 11 11 11 11 11 11 11 11 11	787 824 1386 787 11980 1980 1980 1980 1990 1236 19910 487 337 4307	26.58 14.47 20.11 14.85 22.22 18.47 17.65 16.84 17.757 28.47 28.12 27.28	-1.4 1.84 70 0.4 0.6 2 1.8 7 -5. 9 1. 4 -0. 5 1.6 7 1.4 7 1.3 3 1.5
ars¥DMT¥sa -0.64378 s 4.775013 ku	amp_data¥htmi¥temp нокизни вре нокизни вре носки_козеі жана в	L その他サービス M 公務	-3.61 8.48 13.1623174CR0 3.70 2.57 9.44 2.761 13.33 1.55 11.100 16.72 2.25 55 11.13 8.43 8.43	8.82 55,CROSSTABhtml 585 655 665 676 4.42 4.67 4.62 4.67 1.497 3.64 5.91 8.62 8.62 8.62 8.62 8.62 8.62 8.62 8.62	39 62 63 63 63 60 102 123 87 88 35 35 35 14 4 221 99	9 13 表示 16 16 16 17 19 47 38 16 16 12 12 12 7 78 38 38 38 58 38 38 38 38 38 38 38 38 38 38 38 38 38	4,74 0,84 7,85 5,97 10,00 24,74 20,00 8,42 10,84	23.66 20.97 23.81 17.46 31.67 46.06 30.69 37.21 37.21 34.29 50.00 35.25	79 182 184 184 141 144 157 280 195 195 74 34 477 208	21 22 23 37 21 32 28 61 33 61 33 61 13 5 5 118 66	7.87 824 1386 7.87 1199 1086 1910 1238 1910 1238 1910 4.87 3.37 4.307 2.097	26.58 14.47 20.11 14.85 22.22 18.47 17.55 26.15 26.15 26.47 24.15 26.52	-1.4 1.84 70 1.0.4 0.6 2.1.8 0.6 1.0 4.00 1.0 5.1.6 7.1.3 3.1.5 2.1.0
	amp_data¥htmi¥temp HOKUSHU 製種 AZOKU_KOSEI 東島積	L その使サービス M 公務 本明 12度 を新売 3名度、管理 4件章・注意 5オペレーク・運転 5オペレーク・運転 7 技術・サカート 不明 1登号に展落あらり 2 独身子身う 3 気候学をあう	-3.51 8.49 13_1623174CRO 2.57 9.44 2.761 13.33 1.55 11.00 11.00 15.22 23.53 11.13 8.42 12.29 12.59 12.59 12.59 12.59 12.59 12.59 12.59 12.59 12.57 12.57 13.57 13.57 13.57 13.57 14.57 15.57	8.82 8.67 8.57 8.51 8.51 8.51 8.65 8.79 8.42 4.42 4.97 8.591 8.62 1.437 3.64 8.68 8.68 8.59 8.59 8.59 8.59 8.59 8.59 8.59 8.5	39 62 63 63 60 102 123 87 86 38 41 4 221 99 99 172	9 13 表示 16 11 11 19 47 38 19 32 12 2 7 7 7 8 32 41 4	474 684 789 879 10000 842 1084 632 366 4105 11642 2168	22.06 20.97 23.81 77.46 31.67 48.66 30.99 19.39 19.39 19.39 19.39 19.39 19.39 19.39 20.59	79 182 184 184 141 141 157 299 196 195 74 34 34 34 400	21 22 22 37 21 32 51 33 33 51 13 53 51 15 56 46 46	787 824 1388824 13889 1086 1910 1238 1910 1910 1910 1920 1930 1930 1930 1930 1930 1930 1930 193	2858 2058 2011 447 2011 448 2222 23 484 1684 1684 1684 2615 1765 2241 2645 2645 2645 2645 2645 2645 2645 2645	-1.4 1.84 70 0.4 0.8 1.04 0.8 1.0 1.05 1.0 1.3 1.5 1.0 1.13 1.5 1.0 1.3 1.5 1.0 5.10 1.3 1.5 2.10 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
4.775013 Ku	ang, data¥htmi¥tenp Hokusku 間緒 AZOKU_KOSE 素品書	L その使サービス M 公務 * 4 1 空間 2 販売 3 単至 - 2 販売 3 単至 - 2 販売 2 販売 7 技術・サポート 不明 1 投行用気気気気の 2 2 転列学者の 3 周辺学校の 3 周辺学校の 3 周辺学校の 3 周辺学校の 3 周辺学校の 3 周辺学校の	-3.61 -3.61 13_162317#CR0 3.70 2.67 8.44 2.761 13_31 1.55 11.00 16.72 22.83 11.13 8.43 11.289 7.42 2.43 1.289 7.42 1.299 1	8.82 567 SS_CROSSTABD1ml 6.99 6.81 6.65 6.79 4.42 4.67 6.91 8.62 1.437 9.24 4.62 3.20 6.68 3.20 6.68 3.20 6.64 3.20 6.64 3.20 6.64 3.20 6.64 3.20 6.64 5.57 6.57 6.57 6.57 6.57 6.57 6.57 6.57	39 62 63 63 60 102 123 87 85 355 14 4 221 99 92 104	9 13 表示 18 111 111 19 47 88 10 12 12 77 78 38 41 22 22	4,74 6,84 7,889 10,00 2,474 2,60 2,4744 2,474 2,4744 2,4744 2,4744 2,4744 2,4744 2,4	22.06 20.97 7.46 31.67 30.69 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.99 30.97 3	79 162 184 141 141 144 167 196 74 195 74 34 476 208 400 245	21 22 22 33 21 33 21 32 25 51 51 51 51 51 51 51 51 51 51 51 55 55	787 787 788 788 788 1188 1088 1088 1088	2858 2858 2011 2011 2011 2011 2022 2022 2022 202	-1.4 1.84 70 0.4 0.8 1.0.4 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
-0.64378 چ -0.64378 چ 4.775013 K	ang, data¥htmi¥temp noku sru 動紙 AZOKU _KOSE 東風機	L その差サーゼス W 公務 W 公務 Cross_201702 不明 Z 第二 Z Z 第二 Z 第二 Z 第二 Z 第二 Z 第二 Z 第二 Z 第 Z 第 Z 第 Z 第 Z 第 Z 第 Z Z Z	-3.61 -3.61 13.1623174CRO 3.70 9.44 2.70 1.55 .155 .155 .155 .155 .155 .155 .155 .155 .155 .157 .238 .393 .111 .248 .248 .2577 .257 .257 .257 .257 .257 .257	8.82 8.57 SS_CROSSTABhtml 8.96 6.95 4.42 4.67 8.92 1.497 3.84 8.92 1.497 3.26 4.59 9.20 9.20 20 20 20 20 20 20 20	39 62 63 63 63 60 102 123 87 88 88 88 98 144 221 99 9172 104 9 9	9 3 3 3 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 8 2 2 2 2 2 2 2 2	4,74 6,84 7,889 8,79 10000 8,42 4,74 2000 8,42 2,474 2000 8,42 2,474 2,000 8,42 4,74 2,000 8,42 4,74 108 8,42 4,74 108 8,474 1000 1000 1000 1000 1000 1000 1000 1	22.06 20.97 23.81 17.46 30.89 20.89 20.89 20.89 20.89 20.89 20.80	79 162 184 184 141 144 196 198 198 198 198 299 195 245 400 400 2454 18	21 22 22 33 37 22 33 32 22 51 51 51 51 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	787 824 11888 787 1199 10880 1090 1090 1090 1090 1090 109	2005 11447 2011 11485 2222 2222 2222 2222 2222 2222 2252 11485 2205 2057 2057 2057 2057 2057 2057 205	-1.4 1.84 70 0.4 0.6 2.1.8 0.4 0.6 2.1.8 1.0 7.1.4 1.3 1.5 5.1.8 7.1.4 7.1.3 1.5 5.1.8 7.1.4 7.1.3 1.5 5.1.8 7.1.4 7.1.3 1.5 5.1.8 7.1.5 1.5 5.1.8 7.1.5 1.5 5.1.8 7.1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
-0.64378 s -0.64378 s 4.775013 ku s 5.514635 ku	ang, data¥htmi¥temp HOKUSHU 監督 AZOKU_KOSE 京画編 AZOKU_KOSE 京画編 AMAUSHKI 監督大功(周	L その使サーゼス M 公務 Work cross 201702 不明 2度第 2度第 3写定 4度 3写定 4度 3写定 4度 3写定 4度 3写定 4 3写定 4 3写定 4 3写定 4 3写定 4 3写定 4 3写定 4 3 3 3 3 3 5 4 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 4 5 4 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	-3.61 -3.61 13.1623174CR0 3.70 2.67 9.44 27.61 10.33 1.05 10.75 22.85 11.10 8.44 12.59 7.42 3.33 11.00	8 82 8 57 85 CROSSTABIHIMI 8 56 8 57 8 665 8 77 8 4 42 4 42 4 42 4 427 8 58 8 58 8 58 8 58 8 58 8 58 8 58 8 5	39 62 63 63 63 63 63 63 67 67 88 85 88 85 88 85 88 99 172 172 104 99 29	9 13 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4,74 684 7,898 8,77 10,000 2,474 2,000 8,42 10,84 4,000 4,400 18,42 2,168 4,400 18,42 2,168 4,100 18,42 2,158 18,42 2,100 18,42 4,144 4,146 4,1444,144 4,144 4,144 4,1444,144 4,144 4,144 4,1444,144 4,144 4,144 4,1444,144 4,144 4,1444,144 4,144 4,1444,144 4,144 4,1444,144 4,144 4,1444,144 4,1444,144 4,1444,144 4,1444,14	22.06 20.97 23.97 24.95 24.95 24.95 25.95	79 152 184 184 141 144 144 144 144 145 260 198 198 198 74 34 34 34 208 208 245 208 400 400 245 245 80 80	21 22 22 23 24 23 24 25 26 51 33 33 33 33 33 25 26 45 26 46 46 46 46 46 46 46 46 46 46 46 46 46	787 787 1386 7387 1199 1086 1510 487 1910 487 4303 4303 4400 1944 430 1944 430 4303 4400 1944 430 430 430 430 430 430 430 430 430 4	2868 1447 2811 1487 2822 2822 2822 2852 2845 2845 2845 2845	-1.4 1.84 1
-0.64378 s -0.64378 s 4.775013 ku s 5.514635 ku	ang, dataPhtmiffeng Hooku anu 聖藝 AZOKU_KO SEI 京振道 L	L その巻サービス M 公務 本価 1 言葉 2 販売 4 作者: 文書の 3 知家 - 管理 5 パイレーク・重転 7 読明・灯紙・ 7 読明・灯紙・ 7 読明・灯紙・ 3 記録子を知らり 3 記録子を知らり 3 記録子を知らり 4 読録子を知らり 4 完里 4 完全里	-3.61 -3.61 -3.70 -3.70 -3.77 -9.44 -2.761 -1.35 -1.10 -1.55 -1.10 -1.55 -1.10 -1.55 -1.10 -1.55 -	8.82 5.57 SS_CROSSTAB/tml 6.55 5.79 4.42 4.67 4.42 4.67 4.67 4.67 4.69 4.62 4.69 4.99 4.69 4.99 4	39 62 63 63 63 60 102 1122 87 85 63 85 142 221 122 99 9172 21 104 9 92 92 22 104 104 104 104 104 104 104 104 104 104	9 13 15 15 15 16 10 19 47 10 20 7 7 7 7 7 8 6 44 1 22 2 6 8 9 9 13	474 684 789 879 1000 842 1084 633 940 842 1084 1084 1084 1084 1084 1084 1084 1084	22.00 0 22.01 0 22.01 0 22.01 0 20.00 0 20.	79 152 184 184 141 144 157 290 196 195 196 195 208 245 245 245 80 245 998	21 22 22 37 21 22 28 51 33 33 51 13 13 51 28 51 28 28 51 28 28 51 28 51 28 51 28 51 28 51 28 51 29 29 29 29 29 29 29 29 29 29 29 29 29	787 824 13862 787 149 1910 1920 1930 1930 1930 1930 1930 1930 1930 193	2008 1447 2011 1487 2222 2222 1844 1488 2011 1488 2011 2017 2017 2017 2017 2017 2017 2017	-1.4 1.65 1.66 1.64 1.74
-0.54378 s	ang, data¥htni¥tenp Horousku 製鋼 AZORU, KOSE 即品機	L その差サーゼス W 公務 L その差サーゼス W 公務 X X X X X X		8.82 8.57 8.57 8.58 8.59 8.59 8.59 8.62 8.69 8.69 8.69 8.69 8.69 8.69 8.62 8.69 8.62 8.69 8.62 8.69 8.62 8.69 8.62 8.69 8.62 8.63 8.64 8.64 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	39 62 63 63 63 63 63 63 63 63 55 14 221 12 99 99 1172 104 99 23 23 23 23 23 23 23 23 23 23 23 23 23	9 13 75 75 75 75 75 75 75 75 75 75 75 75 75	4,74 6,84 7,898 8,75 9,11000 8,42 4,74 4,2000 8,42 4,74 4,2000 8,42 4,74 4,05 4,1054,105 4,1054,105 4,105 4,105 4,105 4,1054,105 4,105 4,105	22.00 20.97 23.81 177.46 30.69 30.60	79 152 184 141 141 144 167 72 290 196 195 195 290 196 295 205 18 80 80 80 80 80 80 80 80 80 80 80 80 80	21 22 22 37 22 23 23 23 23 23 24 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	787 824 1388 787 9199 1028 1910 1030 1030 1030 1030 1030 1030 1030	2005 1447 2011 1485 2222 2222 2252 2252 2264 1485 2264 1485 2264 1485 2264 1485 2264 1485 2264 1485 2264 1485 2265 2011 1485 2265 2011 1485 2265 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011 1485 2011	-1.4 1.64 1.64 0.6 1.0.4 0.6 2.1.6 7.1.6 1.0.4 1.0.5 1.0.4 1.0.5 1.0.5 1.0.7 1.0.7 1.0.5 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.5 1.0.7 1.0.5 1.0.5 1.0.7 1.0.5 1.0.5 1.0.7 1.0.5 1.0.5 1.0.5 1.0.7 1.0.5 1.
-0.64378 s 4.775013 k 5.514635 ki	ang, datahitmitteng Hokupatu 戰 Azoku_ko se 京画編 G	L その使サーゼス M 公務 M 公 N (1) M 公 N (1) M 公 N (1) M (1)		8.82 557 555 CROSSTABINIMI 589 561 665 679 442 467 467 467 468 589 442 589 442 589 442 589 442 589 449 2029 912 241 241 777	39 62 63 63 60 102 122 67 89 102 122 199 172 172 199 172 99 172 29 9 172 99 172 99 172 99 172 99 172 99 172 99 172 99 172 90 172 172 172 172 172 172 172 172 172 172	9 13 15 16 11 19 19 19 19 10 20 20 77 78 38 441 222 77 78 38 441 222 17 78 38 441 222 17 78 38 441 12 29 19 19 19 19 19 19 19 19 19 19 19 19 19	4,74 6,84 7,898 8,77 2000 2,874 2000 2,874 2000 2,842 2,086 4,108 4,408 4,1084,108 4,108 4,108 4,108 4,108 4,108	22.00 0 20.97	79 182 184 184 184 184 185 195 74 185 74 34 34 34 34 34 34 32 80 499 499 49 988 899 499 499 120	21 21 22 23 37 23 24 51 24 51 24 51 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	787 824 1386 787 1990 1086 1990 1220 9 2099 2099 2099 1288 487 333 3430 0 2099 2099 2099 2099 2099 2099 2099	2008 1447 2011 1485 2222 2222 2222 2222 2222 2222 2222 2	-1.4 1.84 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
4.775013 Ki	ang, dalahitmikteng Hokushu 現在 AZOKU_KO SE 東原語 NMU SKI 新聞方規模	L その差サーゼス M 公務 本価 1 写声 2 販売 4 代書: 二冊 4 代書: 二冊 4 代書: 二冊 5 パイレーク: 重転 4 代書: 二冊 5 パイレーク: 重転 4 代書: 二冊 5 パイレーク: 重転 4 代書: 二冊 5 パイレーク: 重転 5 パイレーク: 重転 5 パイレーク: 重転 5 パイレーク: 雪飯 5 パイレーク: 雪茄 5 パイレーク: 雪子 5 パイレーク: 雪茄 5	3.81 3.649 13_1623174CRO 2.677 9.44 27011 13_31 1.55 11.00 10.727 22.55 11.13 8.43 12.59 7.42 23.53 11.10 1.259 7.42 23.53 1.10 1.259 7.42 23.53 1.10 1.259 7.44 1.33 1.10 1.259 1.133 1.100 1.259 1.259 1.259 1.259 1.133 1.100 1.259 1.259 1.259 1.133 1.100 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.133 1.100 1.259 1.259 1.259 1.133 1.100 1.259 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100 1.133 1.100	8.82 5.57 SS_CROSSTABhtml 5.58 5.79 4.42 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.47 4.42 4.47 4.42 4.47 4.42 4.42 4.47 4.42 4.47 4.42 4.47 4.42 4.47 4.42 4.47 4	39 62 63 63 60 102 122 122 104 99 99 172 104 99 23 24 56 66 66 66 66	9 13 末示 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	474 684 7899 879 1000 2474 2000 842 020 842 366 346 346 346 346 346 346 346 346 346	22.00 22.91 22.91 40.00 40.00 50	79 182 184 184 141 144 157 280 196 196 196 198 245 245 245 245 245 245 245 245 245 245	21 21 22 22 37 21 33 33 33 33 33 33 33 33 33 33 33 33 33	787 824 11888 787 1198 10888 10888 1088 1088 1088 1044 1088 1048 104	2008 1447 2011 1485 2222 224 1445 1084 2015 2047 2047 2047 2047 2047 2047 2047 2047	-1.4 1.84 1.84 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 3 1.7 3 1.5 3 1.6 5 1.0 5 1.0
4775013 KI 5.514635 KI	ang, data¥htin Hifteng Horou sku 監督 Azoku, Kosel 京政機 Ininu sku 聖奇元文章	L そのをサーゼス W 公務 L そのをサーゼス W 公務 X X X X X X		8.82 8.57 8.57 8.57 8.56 8.59 8.59 8.62 4.62 4.62 8.59 8.62 8.59 8.62 8.63 8.63 8.64 8.65 8.65 8.73 8.62 8.65 8.73 8.62 8.65 8.73 8.65 8.75 8.65 8.75 8.55 8.75 8.55 8.55 8.55 8.55 8.5	39 62 63 63 60 102 123 7 8 7 8 66 35 35 35 14 14 221 172 104 9 9 22 9 9 23 3 451 23 3 451 73	9 3 3 3 3 4 4 4 4 4 2 2 7 7 7 7 7 7 7 7 7 7 7 9 9 9 13 19 19 19 19 19 19 19 19 19 19	4,74 6,84 7,858 6,757 10,000 8,42 4,74 4,2000 8,42 2,474 4,2000 8,42 2,474 4,2000 8,42 2,158 4,100 11,42 4,21 5,2158 4,100 11,42 4,74 4,74 4,74 4,74 4,74 5,78 5,78 5,78 5,78 5,78 5,78 5,78 5,78	22.06 23.97 7.74 3.167 3.167 3.167 3.059 3	79 152 184 184 141 144 157 280 185 74 34 477 7 208 245 477 208 245 400 245 400 245 418 380 9565 245 172 172	21 21 22 22 23 23 23 24 51 51 51 53 51 51 51 55 55 55 55 55 55 55 55 55 55	787 824 787 91198 1028 1910 1028 1910 1238 1910 1238 1910 1238 1910 1028 1930 1088 1348 1348 1348 1348 1348 1348 1348 13	2008 1447 2011 1488 2222 2222 2222 2222 2222 2222 22	-1.4 1.84 1.84 9 0.6 2 1.6 7 -5. 9 1. 4 -0. 5 1.6 7 -5. 9 1. 4 -0. 5 1.6 7 -5. 9 1. 4 -0. 5 1.6 7 -5. 9 1. 4 -0. 5 1.6 7 -5. 9 1. 1.3 5 1.6 7 1.3 5 1.6 7 1.7 7 0.5 7 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.6 1.6 7 1.7 9 1.7 9 1.6 7 1.6 7 1.7 9 1.7 7 1.6 7 1.7 9 1.7 7 1.6 7 1.7 7 1.7
4.775013 Ki 5.514635 Ki 7.225434 Hi	ang data¥htm¥teng HokWaku 監督 AZOKU_KOSE 原語機 INNU SKK 副語元志集	L その巻サービス M 公務 本様 1回数 本様 1回数 2単約 2単約 2単約 2単約 2単約 2単約 2単約 2単約	3.81 13_1628174CRO 3.70 2.57 9.44 2.761 13_31 1.65 11_000	8.82 5.57 SS_CROSSTABDtml 5.99 5.97 4.42 4.67 5.97 4.42 4.67 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 3.64 5.97 5.97 5.92 5.97 5.92 5.97 5.97 5.92 5.97 5	39 60 60 60 60 60 60 60 60 60 60 60 60 60	9 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1	474 684 788 679 1000 2474 22000 642 400 400 400 400 400 400 400 400 400 4	22.00 22.81 2.23.91 2.23.91 2.23.91 4.60 2.03.99 2.21 2.25 2.55	79 182 184 184 141 144 157 280 198 198 198 198 246 400 246 400 246 400 246 400 246 198 109 100 246 100 100 100 100 100 100 100 10	21 21 22 33 22 22 23 33 33 33 33 33 33 33 33	787 824 787 787 787 787 787 1990 1980 1990 480 1990 480 1990 480 1990 1980 1980 1980 1980 1980 1980 19	2008 1447 2011 1485 2222 1647 1648 2222 1647 1755 2244 1755 2247 1755 2247 1755 2247 1755 2247 1122 2455 1125	-1.4 1.84 1.77 1
4775013 Ki 5.514635 Ki 7.255434 Ni	ang, dataPhtmitteng Hoku Sku 動紙 AZOKU, KOSEI 素品紙 INMU Sku 動動元初奏 EMRE 考計	L その差サーゼス M 公務 M 公務 Xmm	3.8 ft 6.49 13_1623174CRO 2.677 9.44 27 cft 13_31 1.55 11.00 10.72 23.53 11.13 8.43 12.26 7.42 3.33 11.00 25.11 1.53 11.00 25.11 1.53 11.00 25.11 1.53 11.00 25.11 1.55 11.00 1.	8.82 5.57 SS_CROSSTABHINI 5.86 5.79 4.42 4.47 5.91 8.62 4.42 4.47 5.91 8.62 4.42 4.47 5.91 8.62 4.42 4.53 1.457 3.64 5.26 5.26 5.27 5.97	39 65 65 65 65 65 65 65 65 65 65 65 65 65	9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	4,74 4,74 8,84 7,889 8,79 1000 2,27,7 2,2000 8,42 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0	22.06 23.81 7.74 3.167 4.60 2.089 4.60 5.721 5.721	79797979797979797979797979797979797979	21 21 22 33 22 22 22 22 22 22 22 22 22 22 22	787 824 118.82 787 1199 10.82	28.58 14.47 2011 2011 14.88 2222 24.16 28.15 28.15 28.45 28.45 28.45 28.55 28.45 28.45 28.55 28.45 28.55 28.45 28.55 28.45 28.55	-1.4 1.84 1.77 1.77 1.75 1.77 1.75 1.77 1.75 1.77 1.75 1.77 1.75 1.05 1.77 1.75 1.05 1
4.775013 Ki 5.0544355 Ki 7.255434 III	ang, data¥htin Hifeng Horota situ 監督 AZOKU, KO SEI 京高橋 Intari SiKK 副設元決局 Bintel 축결	L その使サーゼス W 公務 L その使サーゼス W 公務 Work cross 201702 不明 Togat Sagax Sag		8 82 8 57 8 57 8 58 CROSSTABhml 8 66 8 79 8 66 8 79 8 62 8 65 8 79 8 62 8 65 8 70 8 65 8 70 8 65 8 70 8 65 8 70 8 70 8 70 8 70 8 70 8 70 8 70 8 70	399 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 3 3 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	4,74 6,84 7,88 6,78 7,89 6,78 10,00 8,42 4,74 4,200 8,42 4,74 4,200 8,42 4,26 4,26	22.00 0 22.51 0 2.51	79 79 182 184 184 141 141 144 145 155 200 199 199 199 246 400 246 400 246 400 246 400 246 199 199 199 199 199 199 199 19	21 21 22 22 23 23 23 23 23 23 23 23 23 23 23	787 824 1386 1086 1086 1080 1228 2099 2099 2099 1386 1386 2099 2099 2099 2099 2099 2099 2099 209	2008 1447 2011 1485 2222 1847 1485 2222 1847 1687 2011 2017	-1.4 1.84 1.84 2.1.8 2.1.8 2.1.8 3.0.8 4.0.8 4.0.8 5.1.8
4.775013 Ki 6.514635 Ki 7.255434 III	ang, dalahitmifteng Hooku su 國筆 AZOKU_KO SEI 原語機 anau Seki 新聞方法(蜀 Bintel 옥왕	L その差サーゼス M 公務 本価 1 差更 2 販売 4 作者: 2 販売 5 パイレーク・運転 4 作者: 2 販売 5 パイレーク・運転 7 販売・ブロート 7 販売・ 7 ロート 7 ロート		8.82 5.57 SS_CROSSTABDtual 5.55 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 4.42 4.67 5.57 5.77	299 (C)	9 13 A 11 11 11 12 12 12 12 12 12 12	474 684 789 879 28000 842 1084 632 947 28000 842 1084 1084 1084 1084 1084 1084 1084 1084	22.00 22.01 22.01 22.01 3.07 4.00 3.09 3.	79 192 184 184 1411 1411 1411 1477 200 200 100 100 100 100 100 100	21 21 22 33 21 23 25 25 25 33 33 33 33 33 33 33 33 33 33 33 33 45 45 46 46 46 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	787 824 13862 785 785 1990 1980 1990 1990 1990 1990 1990 1990	2008 1447 2011 1487 2222 1447 1488 2222 1447 1488 2222 1447 1088 2015 1488 2015	-1.4 1.84 1.84 -1.4 1.84 -1.85 -1.85
 vrsVDMT42a -0.64378 -0.6437	ang, sataPitniPiteng Horou Sru B敏 A2CKU, JKO SEI 第四章 AIMAU SKU B数元初章 BURD 年월	L その差サーゼス M 公務 L その差サーゼス M 公務 Xample X	3.81 3.81 3.70 3.70 3.77 9.44 13.31 1.55 3.71 3.71 3.72 3.73 3.70 3.77 9.44 1.331 1.55 3.71 3.71 3.71 3.70 3.74 3.70 3.74	8.82 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.77 5.57 5.77 5	999 66 66 66 66 67 67 67 67 67 67 67 67 67	9 9 13 7 7 7 15 15 16 19 19 10 20 20 20 27 7 7 7 7 7 7 7 7 7 7 7 7 7	4,74 4,74 8,84 7,849 8,79 2,2000 8,42 4,77 2,2000 8,42 3,66 4,1054,105 4,1054,105 4,105 4,105 4,105 4,1054,105 4,105 4,1054,105 4,105 4,105 4,105	22.00 0 20.97 23.81 40.00 0 40.00 0 50.00 0 50	79 79 162 1844 144 144 147 199 280 280 280 280 280 280 280 280	21 21 22 22 22 22 22 22 22 22 22 22 22 2	787 787 824 1188 787 1199 1088 1088 1088 1088 1088 1088 1088	2005 1447 2011 2011 1485 2222 2222 2222 2244 1486 2252 2415 2244 2415 2252 2445 2265 2415 2265 2415 2265 2017	-1.4 1.84 1.84 -1.4 1.84 -1.84
1250MT622 -0.64378 9 4.775013 K 5.514635 K 7.25454 H	ang, datahitmitteng Hokusau 職任 AZOKU_KOSEI 京康議 IIMU SAKI 戰國共和國	L そのをサービス M 公務 本場 イオ 1 温度 2 販売 4 作年:2 5 パレーク・運転 4 作年:2 5 パレーク・運転 5 パレーク・ 5	3.81 3.81 3.81 3.81 3.82 3.82 3.82 3.82 3.82 3.82 3.83 3.84	8.82 5.57 SS_CROSSTABDtml 5.59 5.51 6.59 4.42 4.42 4.42 5.91 5.91 5.92 3.24 5.69 3.26 3	289 663 663 663 663 674 674 777 777 777 777 776 675 765 777 777 777	9 9 13 2 2 2 11 11 11 11 11 11 11 11 11 12 22 2 12 2 7 7 7 7	474 634 788 637 1000 642 642 642 642 1684 633 368 642 1684 1684 1684 1684 1684 1684 1684 1684	22.00 0 22.01 0 22.01 0 22.01 0 42.00 0 30.00 0 31.07 0 31.07 0 32.01 0 32.	79 79 102 194 194 194 195 195 195 195 195 195 200 200 200 195 195 200 200 200 195 195 195 195 200 200 200 200 200 200 200 200 200 20	21 21 22 22 33 33 33 33 33 33 33 33 33 33 33	787 824 1386 787 1990 1088 1990 12299 12299 12299 1384 8487 2299 1384 8499 2299 1384 1384 8499 2092 2093 1384 1384 1384 899 899 20222 2095 1384 13141 899 899 807 878 899 807 807 807 807 807 807 807 807 807 807	2008 1447 2011 1485 2222 1447 1488 2222 1447 1488 2222 247 1488 241 1487 1478 1487 14788 1478 14788 1478 1478 1478 1478 1478 1478 1478 1478	-1.4 1.84 7 70 1 0.4 9 0.8 2 1.8 7 -5. 9 1.8 7 1.3 3 1.6 2 1.0 5 1.8 7 1.3 3 1.5 2 1.0 9 1.8 1.7 5 -0. 1.7 7 1.7 9
4.779013 KJ 6.614635 KJ 7.254644 HI	ang, datahin mitteng Hoku situ 聖者 AZOKU_KO SEI 東藤藩 HIMU Siku 聖教法則團 BIRE 奇麗	L その差サーゼス M 公務 L その差サーゼス M 公務 不明 ス	3.81 3.649 13_1623174CRO 2.677 9.44 2701 13_37 1.05 11.07 10.72 22.55 11.13 8.43 12.59 11.13 8.43 12.59 11.13 1.55 11.13 1.55 1.55 1.13 1.55 1.5	8.82 5.57 SS_CROSSTABHuni 5.58 5.61 6.65 5.79 4.42 4.47 6.91 8.92 1.497 3.64 4.32 4.49 3.20 4.99 3.20 4.99 3.20 4.99 3.20 4.99 3.20 4.97 3.64 4.22 4.47 5.20 5.20 6.65 5.79 5	999 66 60 60 60 60 60 60 60 60 60 60 60 60	9 13 表示 18 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10	4,74 4,74 8,84 7,889 8,79 9,1000 2,27,47 2,2000 8,42 9,2000 8,42 9,2000 1,164 9,2000 1,164 9,2000 9,477 7,313 9,477 7,313 9,477 7,313 9,477 9,47	22.00 0 22.91 22.91 40.00 30.65 30.55	79 79 162 184 184 184 184 195 200 200 200 200 200 200 200 20	21 21 22 22 23 24 24 24 25 25 25 25 25 25 25 27 25 27 27 27 27 27 27 27 27 27 27 27 27 27	7.87 8.24 1.18.82 1.18.82 1.19.90 1.02.82 1.19.90 1.19.90 1.19.44 2.26 3.33 1.19.44 2.26 3.33 1.19.44 2.26 3.33 3.33 1.19.44 2.26 3.33 3.33 1.19.85 2.26 3.33 3.33 1.19.85 2.26 3.33 3.33 3.33 3.33 3.33 3.33 3.33	2058 1447 2011 1488 2222 1844 1488 2252 241 1684 2252 241 2252 241 2252 241 2252 2010	-1.4 1.84 7 70 0 .6 2 1.8 7 -5. 3 1. 4 -0. 5 1.8 7 1.3 3 1.5 5 1.8 7 1.3 3 1.5 5 1.0 9 1.8 1.0 9 1.3 1.5 7 1.7 9 1. 1.7 9 1. 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1
4.775013 K 5.514635 K 7.255448 H	ang, data¥htmi¥temp Horou sivu 監督 Azorou , Kossi 第四通 Immu siku 整直完正面 Bunci 希望	L その差サーゼス W 公務 L その差サーゼス W 公務 X 本 X 本 X 本 X 本 X X X X X X X X X X X X X X X X X X X X X X X	3.81 3.81 3.70 3.77 9.44 3.73 1.155 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.000 1.100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0	8 82 8 57 8 58 8 58	9999 665 666 677 777 777 777 777 777 777 777	9 9 13 13 14 14 15 16 19 19 10 20 20 20 20 20 20 20 20 20 20 20 20 20	4,74 6,84 7,89 8,78 1000 24,74 2000 8,42 4,74 108,4 21,58 4,105 11,42,45 21,58	22.00 23.81 77.40 30.59 23.81 77.40 30.59 20	79 79 79 79 79 79 79 79 79 79 79 79 79 7	21 21 22 22 24 24 33 24 33 3 3 3 3 3 3 3 3 3	787 824 138.62 148.62 149.62 1	2008 1447 2011 1484 1222 2222 224 1848 1848 2012 225 2017 20	-1.4 1.84 70 0.4 0.6 2.1.6 7.6 9.1. 4.0. 5.1.6 7.1.4 7.1.3 3.1.5 5.1.6 7.1.4 7.1.3 3.1.5 5.1.6 7.1.4 7.1.3 3.1.5 5.1.6 7.1.4 7.1.3 3.1.5 7.1.4 7.1.3 3.1.5 7.1.4 7.1.3 3.1.5 7.1.4 7.1.3 7.1.7 9
**YOMT620 -0.64378 9 -0.64378 9 -0.64378 14 -0.64378 1	ang, datahitmifteng Hooku anu 통筆 AZORU_KO SEI 京田橋 anuu Seki 新設元功業 Dankei 속찰	L その巻サーゼス M 公務 本価 名類 名類 名類 名類 名類 名類 名類 名類 名類 名類	3.81 3.81 3.81 3.81 3.82 3.87 3.87 3.87 3.87 3.87 3.84	8.82 5.57 SS_CROSSTABDtunl 5.95 5.77 4.42 4.67 5.77 4.42 4.67 5.77 3.64 4.62 4.67 3.26 4.29	299 66 67 67 67 67 67 67 67 67 67 67 67 67	9 3 3 3 3 4 4 3 3 3 4 4 4 3 3 3 4 4 4 4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	474 474 684 789 579 2000 2474 2000 2474 2000 2474 2000 2474 2000 2474 2000 2474 2000 2474 2000 2474 2000 2474 2186 2000 2474 2186 2000 2474 2186 2000 2474 2186 2000 2474 2186 2000 2474 2186 2000 2474 2186 2186 2186 2186 2186 2186 2186 2186	22.00 0 22.01 0 22.01 0 22.01 0 42.01 0 52.01 0 52.	79 79 102 184 184 1411 1411 1441 1441 1441 1457 200 200 200 200 200 200 200 200 200 20	21 21 22 33 22 24 25 33 33 33 33 33 33 33 33 33 33 33 33 33	787 824 13868 787 1950 1950 1950 1950 1950 1950 1950 1950	2008 1447 2011 1485 2222 1647 1685 2017 169 2017 1755 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 2017 1028 1028 2017 1028 1	-1.4 1.84 70 0.4 0.6 2.1.6 4.0.6 2.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 5.1.7 7.1.7 5.1.7 5.1.7 7.1.7 5.1.7 7.1.7 5.1.7 7.1.7 5.1.7 7.1.8 7.1.7 7.1.7 7.1.8 7.1.7 7.1.8 7.1.7 7.1.8 7.1.
	ang, dataPht mittenp Hoku sku 動紙 AZOKU, Ko SB 素品紙 Iniku Sku 動動決測機 DirikB 音論	L その差サービス M 公務 L その差サービス M 公務 Xmm	3.81 3.81 3.70 3.70 3.77 9.44 3.70 11.33 1.155 11.10 11.75 22.853 11.13 3.443 12.29 7.42 3.333 11.05 1.	8.82 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.77 5.57 4.42 4.47 5.51 8.62 4.42 4.57 3.64 5.26 5.27	999 900 900 900 900 900 900 900	9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	4,74 4,74 8,84 7,898 8,77 2,2000 2,27,77 2,2000 8,42 0,22,2000 8,42 0,22,2000 8,42 0,22,2000 8,42 0,22,2000 1,168 4,42 0,22,2000 1,168 6,200 1,168 6,200 1,168 6,200 1,169 1,1	22.00 0 23.81 0 23.81 0 24.81 0 25.85 0 25.	79 79 162 184 141 141 1441 1441 1441 1441 1441 1441 145 145	21 21 22 22 23 24 24 23 25 25 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7.87 7.87 8.24 1.18.82 1.18.82 1.19.92	2005 1447 2011 2014 1485 2222 1444 1756 2017 2044 1084 2017 2044 2047 204 2047 2	-1.4 1.84 70 0.6 0.6 1.8 2.1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 1.8 7.5. 7.5. 7.1. 7.1.3 1.5 7.1.3 1.5 7.1.4 7.1.3 1.5 7.1.7 7.1.3 1.5 7.1.7
	ang, datahitmitteng Hokusau 職審 Azoku , koss 京商講 Inimu saki 戰商共同團 Danis 年副	L その差サービス M 公務 M 公務 M 公務 Am	3.81 3.81 3.81 3.82 3.74 3.87 3.87 3.87 3.94 3.257 3.257 3.257 3.33 3.39 3.5	8.82 5.57 SS_CROSSTABLIUM 5.59 5.50 5.50 5.50 5.70 4.42 5.70 5.70 5.20 5.51 5.55 5	9999 600 600 600 600 600 600 600	9 9 13 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	474 844 788 879 879 879 879 879 870 842 842 842 842 842 842 842 842 842 842	22.00 0 22.01 0 22.01 0 20.01 0 20.	79 79 122 184 184 144 144 144 144 147 200 200 200 200 200 200 200 200 200 20	21 21 22 22 33 33 33 33 33 35 55 55 55 55 55 55 55	787 824 1386 787 189 1086 1090 1220 2099 1220 2099 1086 1346 1346 1346 1346 1346 1346 1346 134	2008 1447 2011 1485 2222 1447 1485 2222 224 1484 1484 224 1484 225 241 1425 245 1425 1425 245 1425 1425 245 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1455	-1.4. 1.84 70 0.4 0.6 2.1.6 7.6.7 7.6.7 5.1.6 7.1.4 7.1.3 5.1.6 7.1.4 7.1.3 5.1.6 7.1.4 7.1.3 5.0.9 1.1.4 1.3.5 0.9 1.1.7 7.1.7
4.775013 (J) 6.537435 (K) 7.255434 (H) 1363147 (H)	ang, (slathtmifteng) ноки эни ва 2004 _ Ko Sel (slatht ании Sec (slatht) вила (slatht) вила (slatht) вила (slatht) вила (slatht)	L 순요분가-신고, M 公務 부산에(crose, 201702 주평 1월종(王朝王) 4 유물, 2월종) 4 유물, 2월종(王朝王) 4 유물, 2월종(王朝王) 4 유물, 2월종(王朝王) 5 월종(王朝王) 7 월종(王朝王) 7 월종(王朝王) 7 월종(王朝王) 7 월종(王朝王) 7 월종(王) 7 년) 7 월종(王) 7 월종(王) 7 월8(王) 7 월8(2) 7 월8(2)	3.61 3.62 13_1623174CR0 2.67 9.44 2.76 13_33 1.15 11_100 16_72 2.25 2.25 1.13 3.44 1.25 1.13 3.33 3.63 1.100 2.65 1.117 2.25 3.33 3.64 1.100 1.000 1.100 1.0000 1.000 1.000 1.000 1.000 1.000000 1.0000 1.00000 1.00000 1.0000 1.0	8.82 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.77	299 665 665 665 675 675 675 675 675 675 675	9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	474 474 844 789 877 2000 842 900 842 900 842 900 842 900 842 900 842 900 842 900 842 900 842 900 842 900 900 900 900 900 900 900 900 900 90	22.00 0 22.01 0 22.01 0 22.01 0 40.00 0 50.00 0 50.	79 79 162 184 184 141 141 141 141 141 141	21 21 22 33 4 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	787 824 13862 787 149 1088 1910 1910 1910 1910 1910 1910 191	2008 1447 2011 1487 2222 1447 1488 2222 1448 2222 1448 2222 1448 2222 1448 2222 1448 2222 1448 2222 2444 1458 2252 2444 1457 22577 2257 22577 2257 22577 22577 22577 22577 22577 2257	-1.4 1.84 70 0.8 0.8 1.0.4 0.8 2.1.6 1.0.4 1.0.4 1.0.4 1.0.4 1.0.4 1.0.4 1.0.4 1.0.4 1.0.4 1.0.5
4775013 K 5.5914535 K 7.255424 III 13.53147 III	ang, dataPhtniktenp Horou situ 製紙 A2CKU, KOSEI 累風機 C AINAU SiKU 製品元約集 ENRE 考望	L その差サービス W 公務 L その差サービス W 公務 X X X X X X	3.81 3.81 3.70 3.70 3.77 9.44 13.31 1.55 3.70 3.77 3.72 3.73 3.73 3.74 3.73 3.74 3.73 3.74 3.75	8 82 85,CROSSTABhtml 585 58,CROSSTABhtml 585 57 442 447 591 862 1497 364 452 447 591 862 902 911 241 1114 767 520 704 622 620 622 622 622 622 623 623 624 624 625 625 625 625 625 625 625 625	9999 600 600 600 600 600 600 600	9 9 13 13 15 11 16 16 16 16 16 16 16 16 16 16 16 16	4,74 4,74 8,84 7,849 8,79 1000 8,42 4,74 2000 8,42 3,66 4,105 4,105 4,105 8,42 4,105 4,105 8,42 4,105 4,105 8,105	22.00 0 23.81 23.81 24.84 25.85	79 79 162 1844 1441 1444 1444 1447 1280 280 280 280 280 280 280 280	21 21 22 22 22 22 24 33 24 33 25 25 25 25 25 25 25 25 25 25 25 25 25	787 824 138.62 1198 1198 1198 1198 1233 1233 1233 1233 1233 1233 1233 123	2008 1447 2011 1484 2222 1484 1488 1222 2222 2011 2222 2047 2241 1257 2241 1425 2265 1422 2265 1422 2265 1422 2265 1422 2265 1422 2265 1422 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 1425 2265 2275 2775 2775	-1.4 1.84 70 0.6 2.1.6 2.1.6 3.1.6 4.0.6 3.1.6 4.0.6 3.1.6 5.0.6 3.1.6 5.0.7 7.1.4 7.1.3 3.1.5 5.0.7 7.1.7 7.5.7 7.1.7 7.5.7 7.1.7 7.5.7 7.1.7 7.5.7 7.5.7 7.1.7 7.5.7 7.
**YDMT42-a -0.64378 9 -0.64378 9 -0.64355 Ki 5.014635 Ki 13.63447 Hi	ang dataFitmifteng Hokusau 監督 Attoru_kosel 京康編 Jiharu saka 副語元志集 Biharu 年代	L そのをサービス M 公務 M 公務 M 公務 A	3.81 3.81 3.81 3.81 3.81 3.82 3.87 3.87 3.87 3.87 3.87 3.83 3.84	8.82 5.57 5.57 5.57 5.57 5.57 4.42 6.57 4.42 4.67 5.77 3.64 5.77 5.20	289 66 66 66 67 67 67 67 67 67 67 67 67 67	9 9 13 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	474 474 684 788 579 1000 2000 842 402 402 402 402 402 402 402 402 402 4	22.00 22.01 22.01 22.01 3.07 4.00 3.09 3.00 3.09 3.00 3.	79 79 102 104 104 104 105 105 105 105 105 105 105 105	21 21 22 33 33 22 33 33 33 33 33 33 33 33 33	787 824 1386 787 1990 1086 1990 487 2099 1029 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 1046 2099 2002 2099 1046 2099 2002 2002 2000 2002 20000	2008 1447 2011 1485 2222 1843 1488 2222 2222 1843 1088 2202 2015 1075 2247 1075	-1.4.4 1.64 7 (7) 2 (7) 2 (7) 2 (7) 2 (7) 2 (7) 3 (7)
++++++++++++++++++++++++++++++++++++++	ang, dalahit mikteng Hoku situ 聖者 AZOKU, Ko SE 東島藩 Hiku Siku 聖教法則團 Bikee 寺計	L その差サービス M 公務 L その差サービス M 公務 不明 ス	3.61 3.61 3.70 2.77 9.44 2.70 11.05 11.05 11.05 11.05 10.72 22.55 11.13 1.45 1.55 1.17 2.25 2.25 1.13 1.42 1.25 1.13 1.42 1.25 1.55 1.17 1.55 1.57 1.55 1.57	8.82 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.78 5.79 4.42 4.47 5.79 4.42 4.47 5.79 5.79 4.42 4.47 5.79 5	9999 600 600 600 600 600 600 600	9 9 13 表 11 11 11 12 12 12 12 12 12 12	4,74 4,74 8,84 7,849 8,77 20,000 8,42 0,20,74 1000 8,42 0,20,74 1000 1102 1102 1102 1102 1102 1102 110	22 00 0 23 01 0 23 0 23 01 0 23 010	79 79 142 144 141 144 1441 1441 1441 1441 1441 1444 1441 1444 1444 1444 1444 1457 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1467 1468 1468 1468 1467 1468 14	21 21 22 22 22 22 22 22 24 4 5 5 5 5 5 6 6 6 6 6 6 6 7 28 24 24 26 27 27 22 27 22 24 4 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7	7.87 7.87 8.24 7.87 9.11.88 10.08.05 10.09.05 10.000000000000000000000000000000000	2008 1447 2011 2014 1487 2222 1444 1488 2222 244 2017 2	-1.4.4 1.84 1.84 703 1.0.4 2.1.8 2.1.8 3.0.9 3.1.7 4.1.8 3.0.9 3.1.7 5.0.9 1.7.7 5.0.9 1.7.7 5.0.9 1.7.7 5.1.7.
4.775013 K 5.514635 K 13.63447 H	ang, datahitmitteng Hokusau 職審 Azoku, koss 京画講 Intuu saki 戰面充而面 Engel 年詳		3.61 3.61 3.61 3.62 3.76 3.67 3.67 3.67 3.67 3.67 3.67 3.68	8.82 5.57 SS_CROSSTABLIUM 5.59 5.50 5.50 5.50 5.50 5.70 5.20 5.50 5	9999 665 666 767 767 767 767 767 767 767 767	9 9 13 22 22 14 15 15 15 22 20 15 22 20 15 22 20 15 22 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20	474 844 788 679 1000 2000 842 2000 842 1000 1000 1000 1000 1000 1000 1000 10	22.00 0 22.01 0 22.01 0 20.01 0 20.	79 79 122 184 144 144 144 144 144 147 200 200 190 190 190 190 190 190 190 1	21 21 22 22 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	787 824 1386 787 787 787 1990 1220 2099 1220 2099 1384 8487 1388 2099 1388 2099 1388 1348 1348 1348 1348 1348 1348 1348	2008 1447 2011 1485 2222 1184 1485 2222 2011 1485 2222 2011 1485 2211 2017	-1.4. 1.84 1.77 1.84 1.77 1.74

クロス分析 結果表は、10 個の説明変数を、実施群と対 照群間のカテゴリ別のターゲット変数 flg の分布の差 が総合的に大きい順(AIC 値の小さい順)に表示します。 ただし、リストの最初にある変数 DM は、施策実施デー タと対照データを分けるための識別変数ですので、AIC 値は欠損です。 個の変数は、AIC 値が負の値となっており、fg の差が施 策実施有無と関連があることを示しています。(ただし、 shokushu の AIC 値は0 に近い負の値ですので、強い関 連ではありません) No.0 の全体を見ると、実施群と対照 群間の出現率の差は 11.36% (標準誤差 2.14%)です ので、施策効果はあったと認められます。しかし、いく つかのカテゴリ (例えば、sei の男性やgakurekiの大学 院生では、実施群と対照群間の出現率の差が負の値とな

結果から、sei ,jukyo, gakureki, gyoshu, shokushu の5

49 / 215

っており、この施策は男性や大学院卒に対しては無効 (むしろ逆効果) であったことを意味しています。一方、 残りの変数については AIC 値がプラスとなっており、fg の差と施策実施有無との関連性は認められないことを 表しています。

表には、各変数カテゴリ別の出現率の差、出現率の差の 標準誤差、実施群と対照群それぞれにおける、該当度数、 ターゲット件数、ターゲット再現率 (=ターゲット件数 /総ターゲット件数*100)と出現率(=ターゲット件数 /該当件数*100)が表示されます。そして、表の一番 右には、カテゴリ単位で評価した flg の差と施策実施有 無との関連性を表す個別 AIC 値が表示されます。

ボタンを押して クロス分析結果表示 を終了し、「ク ロス分析」画面に戻ります。

3.2.4 ツリーモデルの作成

		クロス会	分析		入力推	宇定のリセット
入力データ (*data=)	SAMP_DATA		where条件 DM		v "1"	
対照データ (control	=) SAMP_DATA		where条件 DM		v ~0*	
ターゲット安敬 (*y=)	fle		'ット値(target=) ^ 1*			
説明実数 (*x=)	sei nenrei jukyo kazoku ki nenshu DM	osei gakureki kin musaki	eyoshu shokushu	-		
除外する説明実数 (dropx=)			0	-		
クロスレベル (cross)	vl=)	クロスレベル2のAIC	值基準 (crossaic=)			
出力クロス集計デー	々(outcross=) _cross2	1	tin .			
出力AIC統計量デー	-タ(outaic=_aic) 表示	出力全AIC統計量データ	(oaicall=_aicall) 表示			
[生成コード]						
	Willowel/DMTMesone data	HUNCOMP DOTO"				
Mint cross(data= (DM="0")).labelda x=sei nerrei jukyi outcross=cross_c JAPANESE	D¥Users¥DMT¥samp_datai sta); staSAMP_DATA(where=() t=dataSAMP_DATAy=figt > kazoku_koseigakurekiki ross2,outfmt=cross_fmt.ou	fdata#SAMP_DATA"; DM="1")).control=control arget="1" nmusaki gyoshu shokusi taic=cross_aic,oaicall=cr	ISAMP_DATA(where= hu nenshu DM ross_aical(print=N,language=	▼ 実行が終く	7しました	
していていていていていていていていていていていていていていていていていていて	2¥Users¥DMT¥samp_datai sta); Sata SAMP_DATA(where=() I=data SAMP_DATA_v=ficts 0 kacku, kosei sekurek ik ki ross2,outfet=cross_fmt.ou iするデータ件数の上録 10	fdata¥SAMP_DATA*; DM=* 1*)).control=contro arcet=* 1* mucaki gyoshu shokusi faic=cross_aic,oaicall=cr v 文文致行 日日+ の	ISAMP_DATA(shere= hu nenshu DM ross_sical[print=N.language= ベルの表示	▼ 実行が終 示 実行 ♪	7しました	前回 表示 戻る

クロス分析画面で指定した入力データ、目的変数、そし て分析結果に基づき、目的変数との関連性が見られた変 数のみを説明変数に指定した「デシジョンツリーモデル 作成」画面に切り替わります。(※ 除外する説明変数 に 関連が無いとみなされた変数が自動指定されます)

入力検証データ に TEST_DATA を指定し、where 条件 (DM = "1")を追加指定します。

同様に、対照検証データ にも TEST_DATA をロードし、 where 条件 (DM = "0") を追加指定します。

そして、

最小ノード件数 を AUTO から 100 件に切り替え、 出力ツリーモデル を _tree2 に変更した後、 新を押します。

DMT_TREE 指定画面 デシジョンツリーモデル作成 入力指定のリセット) file sei nemei juliyo kazoku kosei gakureki kinmusaki gyoshu shokushu nemetri Diliyo kazoku kosei gakureki kinmusaki gyoshu shokushu ターゲット変数 (*y=) fie 説明実数 (*x=) 。 除外球る說明素数 (kazoku_kosei kinmusaki nenRei nenShu 順序尺度説明変数 (ordinatx=) 循環尺度說明変数 (cyclicx=) 最小ノード特数(minonte) → AUTO ④ ノード特数 100 最大分岐 レベル (maxiv) 5 v 出力ツーモデル (outmodele) _tree2 [生成コード] B Ibname data "GYUser¥DMTYDesktop¥samp_data¥data¥SAMP_DATA": Ibname model "GYUser¥DMTYDesktop¥samp_data¥treemodel¥_tree?: options roometer; terr; rol [®] G¥Users¥DMT¥Desk top¥samp_data¥data¥SAMP_DATA*; ry (data); ta=dataSAMP_DATA(where=(DM=* 1*));control=controlSAMP_DATA(w tome u Justie sagetti T ystei nerrei jukyo katoku konei gakureki kinmusaki gyoshu shokushu nershu DM drogork AzOKU,XGGEI KINMUSAKI NENREI 実行 ^{結果表} 前回 戻る 表示するデータ件数の上環 10 v 文数シベルの表示 2 値シベルの表示 11 別々の画面に表示 [D7] RSQUARE=0.820 RMSE=0.089 __DMT_COMPAREPLOT 第行が終わりました。 End of 死INCLUDE(level 1) GギUsersVDMTVDesktop¥samp_data¥p DTE: Submitted stater real time : 0.593 cpu time : 0.265 注意 outmodel=_tree 指定したデータセットは存在します。実行すると上書きされます!

(※ 最小ノード件数を AUTO (既定) に設定すると、 ツリー分岐生成条件である分岐後の各ノードに含まれ るデータの必要最小件数が、一定件数ではなく、分岐後 の各ノードのターゲット出現率の標準誤差の指定の誤 差率内に収まるように設定されます。 誤差率が小さい ほど分岐が起こりにくくなりますが、この例では、サン プル数が少ないので、既定値 (0.1) のままではツリーが 生育しにくいため一定のデータ件数を最小ノード件数 として指定しています。 なお、 AUTO 指定のときの誤

3.2.5 アップリフトツリーモデルの表示(ツリー分岐表)

表示														
X¥Users¥DMT¥samp_data¥html¥ten	Users¥DMT¥samp_data¥htmi¥temp¥tree_treetab_20170213_162923¥TREE_TREETABhtmi v 8000 v													
DMT_TREE {	Eデルテー:	ブル(モデルデータ	セット: modeltree testmdl.TESTtr	2, テス ree2)	、トデ	-9G	対す	a£∋	デル形	式デ -	-タセ	ッ ト:		
[D]-[C] [D]-[-C] [D]-														
Iv10 Iv11		lv12	lv13											
ROOT[D]-[C]11.35%, N0: [D] [D]30.59%(4190619),[C] 19.33%(26714,381);[D]- [C]11.31%,[D]30.60% (190621),[C]19.29% (266/1,379) (12/292 男性"]-[C]-1.67%,[D] %(64/344),[C] %(192/947): [D]- 33%,[D]18.18% 1),[C]18.51% 29) SEI 性別="1	N00: [D]-[C]-8.50%[D]22.00% (44/200),[C]30.50%(190/623): [D]-[C]-7.19%,[D]22.60% (47/208),[C]29.79%(168/564) JUKYO 住居-*3 負貨マンショ ン"," 不明","4 借家","5 ア パート","7 社宅"	N000: [D]-[C]-24.39%,[D]8.00% (3/400),[C]23.39%(114352): [D]-[C]-24.03%,[D]11.32% (12106),[C]25.35%(105/297) SHOKUSHU 暖麺=*6 野豚",*5オ ペレータ・運転手",* 不明*,*7技 術・サポート*,*1 営業*	-24.39	16.16	8.00	25.49	32.39	-24.03	17.07	11.32	21.54	35.35	
			N001: [D]-[C]7.96%,[D]36.00% (36/100),[C]28.04%(76/271); [D]-[C]10.72%,[D]34.31% (35/102),[C]23.80%(63/267) SHOKUSHU 職種="4 作業·清 掃","2 販売","3 経営・管理"	7.96	16.16	36.00	19.62	28.04	10.72	16.43	34.31	19.36	23.60	
	-	N01: [D]-[C]13.27%,[D] 13.89%(20/144),[C]0.62% (2/324): [D]-[C]10.18%,[D] 11.28%(15/133),[C]1.10% (4/365) JUKYO 住居="1 持家 (自己所有)","2 持家(家族所 有)","6 奏"		13.27	23.26	13.89	23.46	0.62	10.18	21.42	11.28	26.47	1.10	
N1: [D]- 45.82% 17.28% [C]24.8 (128/28 (94/450]-[C]28.54%,[D] 6(126/275),[C] 6(75/434): [D]- 83%,[D]45.71% 80),[C]20.89% 0) SEI 性別="2	N10: [D]-[C]-4.50%[D]18.42% (21/114),[C]22.92%(55/240): [D]-[C]1.48%,[D]23.30% (Z4/103),[C]21.83%(55/252) GAKUREKI 最終学歷="5 大学 院","4 大学","2 高校"		-4.50	18.42	18.42	17.38	22.92	1.48	16.59	23.30	18.27	21.83	
A H-		N11: [D]-[C]54.91%,[D] 65.22%(105/161),[C]10.31% (20/194): [D]-[C]39.06%,[D] 53.76%(104/177),[C]19.70% (39/198) GAKUREKI 最終学歴 ="3 専門学校"," 不明","1 中 学"		54.91	26.01	65.22	14.05	10.31	39.06	28.50	58.76	14.36	19.70	

ツリー分岐表には、ノード分岐に採用された説明変数 値と実施群([D])、対照群([C])間のターゲット出現率 の差([D]-[C])、そして群別のターゲット出現率、件数割 合、ターゲット再現率、ターゲット出現率が分岐ノード ごとに表示されます。モデル検証用テストデータを分析 画面で指定した場合は、:(コロン)の後に、検証データ における各統計量も表示されます。また、終端ノードに ついては、「ターゲット出現率の差%」と実施群、対照群別 の「件数割合%」と「ターゲット出現率%」の値がモデル作成 用データおよびテストデータ別に右側に表示されます。

実施群と対照群間の出現率の差は、クロス分析で見たように最も関連性が高い、性別の違いによって、最初にも

たらされ、その値によって2つのノードに分岐していま す。そして、男性は住居区分と職種、女性は学歴の違い によってそれぞれさらに分岐し、最終的に5個のグルー プ(終端ノード)が生成されています。終端ノードの実 施群と対照群間の出現率の差(アップリフト)は -24.39%~54.91%の範囲に分布しています。

3.2.6 ツリーモデルの評価(アップリフトチャート)

アップリフトチャートの表示

Data Bring New Insight to Your Business 3 実行例 3.2 (例 2) 施策実施効果の分析

アップリフトチャート は横軸にモデルの予測出現率の 差が大きい順に実施データ、対照データをそれぞれ並べ て、対応するアップリフト(予測出現率の差の累積値= 予測追加出現数)を縦軸にプロットした図です。実施デ ータ(DATA=入力データ)では、予測出現率の差を施 策を実施した場合の予測出現率一施策を実施しなかっ た場合の予測出現率(既定では [D]-[C] と表示)と定義 し、対照データ(CONTROL=入力データ)では、逆に、 施策を実施しなかった場合の予測出現率-施策を実施 した場合の予測出現率の差(既定では [C]-[D] と表示) と定義しています。

アップリフトチャートから、以下のことがわかります。

[実施データについて]

・実施データを、すべて実施しなかったとした場合と比

較した、全体の実施効果は、モデル作成データでは +86 (619 件)、テストデータでは +70 (621 件) と見積も られる。(Current の累積 Uplift 値)

・実施データでは、[D]-[C]の予測値が正の値であったノ ードのみを実施したとすれば、計算上の最大の実施効果 (モデル作成データでは +115 (405 件)、テストデータ では +95 (515 件))が得られる。(Max の累積 Uplift 値) ・したがって、[D]-[C]の予測値が正の値であったノード のみを実施すれば、モデル作成データでは 115-86=+29、 テストデータでは 95-70=+25 だけ現状の全部実施の場

[対照 (非実施) データについて]

合より出現数が増えることが期待されます。

・対照データを、すべて実施した場合と比較した場合の 全体の非実施効果は、モデル作成データでは-74、テス トデータでは-75と見積もられる。(Currentの累積Uplift 値) すべて実施したとすれば、符号を変えた数だけ出現 数が増える計算になる。

・対照データでは[C]-[D]の予測値が正の値であったノードのみを非実施とし、残りをすべて実施したとすれば、

計算上の最大の非実施効果(モデル作成データでは +97 (592 件)、テストデータでは +71 (297 件))が得られ る。(Max の累積 Uplift 値)

・したがって、[C]-[D]の予測値が正の値であったノード のみを非実施とし、残りをすべて実施したとすれば、モ デル作成データでは 90+74=+164、テストデータでは 71+75=+146 だけ現状の全部非実施の場合より出現数 が増えることが期待されます。

このように、アップリフトチャートによって、施策実施 先を最適化すると、どれだけ出現数が増えるかを見積も ることができます。

3.2.7 ツリーモデルの評価(比較プロット)

比較プロット(予測値と実際値の散布図)の表示

Data Bring New Insight to Your Business 3 実行例 3.2 (例 2) 施策実施効果の分析

比較プロット はモデルの予測値と実績値の差(誤差)の大きさを評価します。実施データにおける出 現率([D])、対照データにおける出現率([C])、各ノ ードにおける2つの出現率の差([D]-[C])をTEST_ DATA にモデルを当てはめた場合の値と比較した散 布図がそれぞれ表示されます。[C]の散布図において 1個のノードが対角線より離れていますが、残りは対 角線上の近くにプロットされていますので、検証デ ータにおけるツリーモデルの予測値は実績値に近か ったことがわかります。

「デシジョンツリーモデル作成」 画面を終了し、「メニュ

-」画面に戻ります。

4. アルゴリズム

4.1 ノード分割アルゴリズム

DMTデシジョンツリーは、親ノード集団を2つの子ノード集団に分割する処理を繰り返し行います。
 PRECAT=Y 指定(デフォルト)の場合は、以下の(1)を最初に一度だけ実行し(2)~(4)の処理を親ノード集団ごとに行います。
 PRECAT=N 指定の場合は、以下の(1)~(4)を

RECATEN 指定の場合は、以下の $(1) \sim (4) を$ 親ノード集団ごとに行います。

- (1) 数値説明変数のカテゴライズ
- (2) AIC基準による候補分岐変数の決定
- (3) 候補分岐変数のカテゴリ分類パターンの計
- (4) 最小ノード件数を満たす候補分岐変数とカ テゴリ分類パターンの選択

4.1.1 数値説明変数のカテゴライズ

説明変数ごとに、スタージェスの公式を用いて、欠 損で無いオブザベーション件数Nに対する階級数を 決定します。この階級数以下の種類数の値しか持た ない数値変数は、個々の存在する値そのものが個々 のカテゴリとして定義されます。なお、nomergen= パラメータに任意の数値を指定することにより、 個々の値を個々のカテゴリとする階級数の上限を明 示的に与えることも可能です。スタージェスの公式、 もしくは nomergen=パラメータにより明示的に与 えられた階級数を超える種類数の値を持つ数値変数 は、件数Nを階級数で除した1階級平均件数を必要件 数とし、カテゴライズのしきい値を、最小値の方か ら上記1階級必要件数に達するまでを1つのカテゴリ として逐次決定していきます。

Nを欠損を除くオブザベーション件数、log2()を2を底 とする対数関数、ceil()を整数値への切り上げ関数と すると、以下の計算式により1階級必要件数を決定し ています。

階級数=ceil(1+log2(N)) 1階級必要件数=ceil(N/階級数)

なお、最後のカテゴリが1階級必要件数に達していな

い場合、1つ前のカテゴリに併合するかどうかを選択 できます(lastcatm=Y/Nオプション)。デフォルトは 併合しない(lastcatm=N)設定です。したがって、 当該数値説明変数にタイが全く存在しない場合は、1 番目から最後から1つ前のカテゴリの該当件数はす べて等しくなり、最後のカテゴリのみそれ以下の該 当件数を持つことになります。(タイが存在する場合 は各カテゴリの該当件数は等しくなりません。) この数値説明変数のカテゴライズ処理はターゲット 変数とは無関係に行われます。

4.1.2 欠損が多い説明変数のカテゴライズについて

lastcatm=N(デフォルト)の場合は、欠損でないオ ブザベーション件数が1階級必要件数に満たない変 数でも欠損と1つの有効な値の範囲を示すカテゴリ の2つが生成されます。しかし、DMTデシジョンツリ ーのノード分割アルゴリズムでは、数値タイプ説明 変数については、有効な値で作成されるカテゴリ数 が2個以上存在しないと、その説明変数は分析から除 外するように制御しています。(数値説明変数の場合 は「欠損」と「それ以外」というツリー分岐が発生 しないようにするため。文字タイプ変数の場合は、 常に欠損は有効なカテゴリとして取り扱うため、「欠 損」と「それ以外」というツリー分岐が発生する可 能性があります。)なお、lastcatm=Yとすると、欠損 でないオブザベーション件数が2階級必要件数に満 たない変数は分析対象から除外されます。もしも欠 損が多い数値タイプ説明変数の欠損と欠損以外の違 いに意味があると考える場合は、欠損とそれ以外と いう2つの値を持つ文字タイプ説明変数を作成して、 その変数を分析に用いるようにしてください。

4.1.3 AIC 基準による候補分岐採用説明変数の決定

ターゲット値の出現率を予測する分類木の場合は、 ターゲット変数(y=パラメータ)を、ターゲット値 (target=パラメータを満たす値)と非ターゲット値 の2値変数とみなして、これと個々の説明変数(x=パ ラメータ)との間の分割表モデルにおける統計的関 連性をAIC値により評価します。

ターゲット変数の値を予測する回帰木の場合は、タ ーゲット変数(y=パラメータ)を目的変数、個々の 説明変数(x=パラメータ)を処理変数とみなした一 元配置分散分析モデルにおけるAIC値により評価し ます。

アップリフトモデルの場合は、まず、各変数の実施 群と対照群の各カテゴリの出現率または平均値を、 親ノードにおいては差が無くなるように調整します。 その上でカテゴリ単位の実施群と対照群間の出現率 の差、または平均値の差の有意性に関するAIC値(個 別AIC値)を算出します。説明変数ごとのAIC値は、 個別AIC値を変数単位に合算した値-2 と定義し評価 に用いています。

AIC値最小、すなはち、最もターゲット変数の分布と 関連が高いとみなされた説明変数を親ノード集団を 2つの子ノードに分岐させる第一候補説明変数、2番 目に関連が高いとみなされた説明変数を第2候補説 明変数、... k番目に関連が高いとみなされた説明 変数を第k候補説明変数というように決定します。た だし、いずれの候補もAIC値が負であることを条件と します。

なお、nomergen=パラメータを用いて数値説明変数 のカテゴライズ方法をカテゴリ数が多くなるように 指定すると、AIC値が上昇するため、分岐説明変数に 採用されにくくなります。

4.1.42分岐属性値範囲の決定

4.1.3で選択された候補説明変数が**文字タイプ変数**の 場合は、標準では「名義尺度」(個々の値の並び方に 制約がまったく無い尺度)とみなして、ターゲット 比率の大きさ、もしくはターゲット平均値の順にす べてのカテゴリを並べておいた上で、2つに分ける最 適位置をエントロピー最小基準、偏差平方和最小基 準、またはAIC値基準により探索します。k個のカテ ゴリが存在する場合、k-1通りの計算結果を比較する ことになります。

しかし、ordinalx=パラメータに指定した文字タイプ 変数については「順序尺度」(ソート順に値が並ぶと いう隣接制約がある尺度)、cyclicx=パラメータに指 定した文字タイプ変数については「循環尺度」(個々 の値にはソート順の隣接制約があるが、両端の値の 間にも隣接関係があるとする尺度)とみなして以下 のように処理しています。「順序尺度」の場合は、値 のソート順にカテゴリを並べておいた上で、2つに分 ける最適位置を探索します。k個のカテゴリが存在す る場合、名義尺度の場合と同じく、k-1通りの計算結 果を比較することになります。「循環尺度」の場合は、 値のソート順にカテゴリを並べておいた上で、(あ) 2つに分ける場合、(い)3つに分けた上で1番目と3番 目の併合カテゴリと2番目のカテゴリに2分する場合 の可能な全パターンを計算した上で、最適な分割方 法を探索します。k個のカテゴリが存在する場合、 (k-1)+{1+2+...+(k-2)}通りの計算結果を比較すること になります。

ただし、文字タイプ説明変数の場合の欠損カテゴリ は単なる1個のカテゴリとして、有効なカテゴリと同 列に取り扱います。(これは順序尺度、または循環尺 度の指定の場合でも同様です。)なおカテゴリ数が一 定の値(デフォルトはmaxcatn=1000)を超える異な る値を持つ文字タイプ説明変数は分析対象から除外 されます。

候補説明変数が数値タイプ変数の場合は、標準 (splitpts=2) では「循環尺度」とみなし、(1) の方 法でカテゴライズされた値のリストを(あ)2つに分 けた場合、(い)3つに分けた上で1番目と3番目の併 合カテゴリと2番目のカテゴリに2分し、さらに欠損 値が存在する場合は分岐後のどちらかのノードに含 むことを考慮した上で、可能な全パターンを計算し、 分岐後のターゲット比率に関してエントロピー最小 となるパターンを探索しています。(1)の方法によ りk個のカテゴリを持つようにカテゴライズされた 数値変数の場合、(k-1)+{1+2+...+(k-2)}通りの計算結 果を比較することになります。しかし、ordinalx=パ ラメータに指定した数値タイプ変数については「順 **序尺度」**とみなして(あ)の方法による併合パター ンのみを探索するよう指定することも可能です。 ordinalx=パラメータに指定した数値タイプ変数は (k-1)通りの計算結果のみを比較することになります。

ここで、splitpts=1 と指定すると、全数値タイプ説明 変数を標準では「順序尺度」とみなして(あ)の方 法による併合パターンのみを探索するよう切り替わ ります。そして、cyclicx=パラメータに指定した数値 タイプ変数については「循環尺度」とみなし(あ) と(い)の両パターンの計算結果を比較して併合パ ターンを決定します。

4.1.5 最小ノード件数を満たす分岐説明変数の選択 第一候補説明変数の各カテゴリを2つのノードに振

Data Bring New Insight to Your Business 4 アルゴリズム 4.2 終端条件

り分けたとき、2つのノードが共に最小件数基準 (mincnt=パラメータ)を満たす4場合は、その分け方 をノード分岐方法として採用します。もしも、その 分け方がノード最小件数基準を満たさない場合は、 ノード最小件数を満たす分け方が存在すれば、その 中で最適な分け方を保存しておきます。

次に、第二候補説明変数について同様の計算を行い ます。第二候補説明変数の分け方が最小件数基準を 満たす場合、第一候補説明変数で保存しておいた分 け方が存在すればそれと比較を行い、良い方の分け 方をノード分岐方法として採用します。第一候補説 明変数で保存しておいた分け方が存在しない場合は、 第二候補説明変数の分け方を採用します。 第二候補説明変数の分け方が最小件数基準を満たさ

ない場合は、第一候補説明変数で保存しておいた分 け方と比較を行い、良い方を保存しておき、第三候 補説明変数について同様の計算を行います。

AIC値<0の条件を満たす候補説明変数が尽きるまで 以上の計算を行い、最後に保存されていた分け方が 存在する場合、その分け方を分岐方法として採用し ます。存在しない場合は「分岐不能」として親ノー ドを終端ノードにします。

4.2 終端条件

2種類の終端条件が設定可能です。

- (1) ノード最小件数 (mincnt=パラメータ)
- (2) 分割の最大階層(maxlvl=パラメータ)

4.2.1 ノード最小件数(mincnt=パラメータ)

mincnt=パラメータの値は正の整数(1~n)、または キーワードAUTO(デフォルト)です。 mincnt=AUTOとは、分類木モデルの場合、分岐先の2 つの子ノードの該当件数をそれぞれN1,N2、ターゲッ ト出現率をそれぞれp1,p2とすると、以下の条件を満 たす分岐候補説明変数が全く存在しない場合に親ノ ードを終端ノードに設定します。

SQRT{p1*(1-p1)/N1}<=err_rate*p1 カッつ SQRT{p2*(1-p2)/N2}<=err_rate*p2 これらの式の左辺は、それぞれ、N1個、N2個の抽出 データ上で観測されたターゲット出現率p1,p2を、そ れぞれのノード定義における母集団出現率の推計値 とした場合の標準誤差を表しています。これらの標 準誤差が右辺の観測比率pのerr_rate倍以内に収まる ようなノード件数N1,N2になっているかどうかをチ ェックします。

上式をN1,N2についてそれぞれ解くと、

N1>=p1*(1-p1)/(err_rate*p1*err_rate*p1) N2>=p2*(1-p2)/(err_rate*p2*err_rate*p2)

を同時に満たす2つの子ノードのみを生成します。 (出現率の差に関するアップリフトモデルの場合は 実施群、対照群ともに上記条件を満たす必要があり ます) (ただし p1>0.999のときp1=1,p1<0.001のときp1=0.001. p2も同様)

なお、err_rateは 0<err_rate<1 の範囲で指定可能で す。

回帰木モデルの場合は、分岐先の2つの子ノードの該 当件数をN1,N2、ターゲット平均値をm1,m2、ターゲ ット標準偏差をs1,s2、許容誤差率をerr_rate (ERR_RATE=パラメータで指定します)とすると、 以下の条件を満たすノードのみを生成します。

s1/SQRT(N1)<=err_rate*m1 カ>∽ s2/SQRT(N2)<=err_rate*m2

これらの式の左辺は、それぞれ、N1個、N2個の抽出 データ上で観測されたターゲット平均値m1,m2の標 準誤差を表しています。この標準誤差が右辺の観測 平均値mのerr_rate倍以内に収まるようなノード件数 N1,N2になっているかどうかをチェックします。 上式をN1,N2についてそれぞれ解くと、

N1>=s1*s1/(err_rate*err_rate*m1*m1) N2>=s2*s2/(err_rate*err_rate*m2*m2) (ただし |m1|<0.001のとき|m1|=0.001. m2も同様)

しかしながら、上式では、**s1=0,s2=0**なら N1>=0,N2>0となってしまうので、

M1>=max(N1,OYA_N/10,10)

⁴ アップリフトモデルでは、実施群、対照群の両方で最小 件数基準を満たす必要があります。

Data Bring New Insight to Your Business 1 4.2 終端条件

$M2 >= max(N2,OYA_N/10,10)$

ています。

アルゴリズム

ただし、N1,N2は上記算式による、OYA_Nは親ノー ド件数です。このM1,M2を同時に満たす2つの子ノー ドのみを生成します。(平均値の差に関するアップリ フトモデルの場合は実施群、対照群ともに上記条件 を満たす必要があります)

デフォルトは、mincnt=AUTO,err_rate=0.1 に設定し

4.2.2 分割の最大階層(maxlvl=パラメータ)

分割の最大階層に達したノードは強制的に終端ノードになります。maxlvl=パラメータは1~20 の範囲の整数で指定できます。デフォルトは、maxlvl=5 です。

5.メニュー画面の構成

設定確認変更・オプション パラメータのロード・保存

分析画面の選択

「メニュー」画面 には、設定確認変更ボタン、オプ ション設定ボタン、パラメータのロードボタン・パ ラメータの保存ボタン、 そして、 分析画面選択ボ タン が配置されています。

5.1 設定確認変更

設定確認変更 を押すと、GUI実行モードでDMTデ

シジョンツリーを実行するために必要な初期設定と 設定変更を行う「設定画面」が開きます。 メニュー画面を最初に起動した場合は、以下のよう

に 初期設定が必要 ボタンのみが表示されています。

DMTデシジョンツリー起動画面					
DMTデシジョンツリーVer.1.3					
①データ 抽出	②項目 → 分析	③モデル 作成表示 =	 ④モデル 検証 = 	⇒ 5 5 5 5 5 5 5 5 7 5 7 8 5 7 8 7 8 7 8 7	⑥モデル 適用
データ読込	クロス分析	モデル作成	ゲイン・収益	枝刈り	予測付与
データ加工	結果表	分岐表	比較プロット	枝接ぎ	口一片保存
ラベル付与	結果図	ノード表	正訳表	予測這修正	コード管理
核証確保	結果管理	モデル管理	アップリフト図		
データ管理	1	統計モデル	62	017 Data Mine Tech Ltd. (Buil	d 2017/2/10)

初期設定方法については、導入方法をご参照ください。

GUI実行モードのセットアップ方法 定完了後に <u>実行例</u>を実行後に「設定画面」を開く と、以下のようになっています。

Data Bring New Insight to Your Business 5 メニュー画面の構成 5.1 設定確認変更

	設定画面		×		
直接入力を許す	DMTデシジョンツリー設定				
分析ディレクトリ変更	C:¥Users¥DMT¥samp_data				
データセットディレクトリ	C:¥Users#DMT¥samp_data¥data		閉水		
HTMLディレクトリ	C:¥Users¥DMT¥samp_data¥html		際K		
クロス分析結果ディレクトリ	C:¥Users¥DMT¥samp_data¥cross		際		
ツリーモデルディレクトリ	C:¥Users¥DMT¥samp_data¥treemodel		際		
統計モデルディレクトリ	C:¥Users¥DMT¥samp_data¥statmodel				
スコアコードディレクトリ	C:¥Users#DMT¥samp_data¥scorecode		厭		
ツリー表データディレクトリ	C:¥Users¥DMT¥samp_data¥treetab_data	C#Users#DMT#samp_data#treetab_data			
ノード表データディレクトリ	C:¥Users¥DMT¥samp_data¥nodetab_data				
ゲイン図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥gain_data				
アップリフト図座標データディレクトリ	C:#Users#DMT#samp_data#uplift_data				
比較図座標データディレクトリ	C:¥Users¥DMT¥samp_data¥compare_data				
正誤表データディレクトリ	C:¥Users¥DMT¥samp_data¥correct_data				
指定保存ディレクトリ	C:¥Users¥DMT¥samp_data¥parmset		關K		
サンプルディレクトリ	C-¥Users¥DMT¥samp_data¥sample		厭		
exeファイル変更	C#Program Files#World Programming WPS 3#bin#wps.exe				
マクロ保存ディレクトリ	C#Users#DMT#DMT_TREEV1.3_build20170210				
使用するマクロカタログ	C#Users#DMT#DMT_TREEV1.3_build20170210#SASMACR.wpccat	マクロ作成	・更新		
サンブルデータ作成	samp_data.csv, test_data.csv, samp_label_fmt.csv 等は存在します				
ライセンスコード	※有償版はライセンスコードを入力してから「マクロ作成・」	更新」ボタンを押し	してください		
リセット	この画面の全指定を初期値にリセットします		戻る		

5.1.1 直接入力を許す

直接入力を許す ボタンを押すとボタン表示 が 直接入力を禁止する に切り替わり、設定すべき 分析ディレクトリ設定 exeファイル設定 マクロ保存ディレクトリ の3箇所のディレクトリまたは ファイルパス名がテキストボックスに直接入力可能 になります。

(※ システムの制限等の理由により、各ボタンを押 しても、ディレクトリやファイル選択ウィザードが 開かない場合に有用です。)

テキストボックスにパス名を入力後、右に出現する **設定** ボタンを押すと入力が確定され、存在がチェ ックされます。

すべての入力設定完了後に、 直接入力を禁止する を押 すと、元の状態に戻ります。

5.1.2 分析ディレクトリの変更

分析ディレクトリ変更 を押すと、現在の分析ディレ クトリを新しい分析ディレクトリ、または、既存の 別の分析ディレクトリへ切り替えることができます。

新たなデータ分析を行う場合は、新しい分析ディレ クトリを作成し、その中に分析結果を保存すると良 いでしょう。

既存の分析ディレクトリに変更すると、その分析デ ィレクトリに保存されているすべての実行結果ディ レクトリと _LASTSAVE_ パラメータが自動的にセ ットされ、その分析ディレクトリで実行した最後の 状態から分析を継続することができます。

5.1.3 exe ファイルの変更

exeファイル変更 を押すと、導入されている SAS または WPS の実行ファイル (sas. exe または wps.exe)を変更できます。

ファイル選択画面は C:¥Program Files ディレクトリ を初期ディレクトリとして開きます。

通常、 sas.exe ファイルは、 C:¥ Program Files¥SASHome¥SASFoundation¥9.x¥sas.exe (ここ で、9.x は SAS バージョンを表します) にあり、 wps.exe は、C:¥Program Files¥World Programming WPS 3¥bin¥wps.exe にあります。ファイル選択画面 のディレクトリパスを辿って指定します。ただし、 インストール時の設定によって、実際の exe ファイ ルのパスは異なる場合もあります。

ただし、SAS から WPS へ、または WPS から SAS へ exc ファイルを変更する場合は ______ を行ってから行う必要があります。(※既存の分析 フォルダーは SAS または WPS のいずれかを用いる かを決定済みであるため)

5.1.4 マクロ保存ディレクトリ

マクロ保存ディレクトリ ボタンを押すと、DMT デシジ ョンツリーマクロカタログ を保存するディレクト リを変更できます。

ディレクトリ選択画面は、C:¥users¥ユーザプロファ **イル名** を初期ディレクトリとして開きます。

指定したディレクトリ内に、コンパイル済みマクロ カタログ (sasmacr.sas7bcat または SASMACR.wpccat)が存在すれば、使用するマクロカタログ に自動的に指定されます。

(注意: もしもそのマクロカタログが本メニューの

マカル作utiv更新 で作成されたもので無い場合は、別の

ディレクトリを指定し、新たにマクロカタログを作 成し、それを用いてください。)

5.1.5 マクロ作成・更新

マクロ作成・更新

ボタンを押すと、本メニューに組み込

Data Bring New Insight to Your Business	5 メニュー画面の構成	5.2 オプション設定
---	-------------	-------------

まれているソースプログラムからコンパイル済みマ クロカタログが生成され、マクロ保存ディレクトリ 内に保存されます。(既存のものは上書き)

注意: 本アプリケーションの最新のビルドを入手し たときは、ファイルのコピー 記載の方法により、フ ァイルを適切な場所に解凍・保存した後、ショート カットのリンク先を最新版の "DMT デシジョンツリ ーV1.3.exe" に変更するなどの方法により、最新ビル ドの DMT デシジョンツリーV1.3 を起動し、既存の 分析ディレクトリ、exe ファイル、マクロ保存ディレ

クトリをそれぞれ指定した後、 vm/tmi 更新 を押し

て、マクロカタログも最新版に更新してください。 (※動作を確認した後、古いビルドファイルは削除 します。)

5.1.6 サブディレクトリを開く

※ 起動画面の「データ管理」、「結果管理」、「モデル 管理」、「コード管理」メニューでサポートしていない、複数アイテムをまとめて削除することが可能です。

注意:

①内容を削除する場合は、ディレクトリ単位で保存 されているものはディレクトリ単位で削除してくだ さい。ディレクトリ内の一部のファイルのみ削除す ると、動作しなくなります。

②ディレクトリ名やファイル名の変更は動作しなく なる原因になりますので、行わないでください。

5.2 オプション設定

オプション設定を押すと、各分析画面で共通なオプ

ションと各分析画面でのみ有効なオプションの設定 値の確認と変更ができます。

5.2.1 共通オプション

			オブ	ション設定画面				
电通	検証確保 クロス分析	結果表	モデル作成 統計	トモデル「比較ブロット				
±161	後定	1.00.000						
言語	(language=)	● 日本語	吾 〇 英語	グラフ表示言語 (era	ph language=)	〇日本語	● 英語	
IV	コーディング	shift-jis	~	グラフデバイス(dev=)		GIF	¥	
数值(D表示形式							
AIC(aicf=)	8	BEST8.	, 出現率·再現率(百分率表示)(pd	otf=)	7.2	¥
R2乗	e・AR値・ROC面積(r2f=	ar_rocf=)	5.8 •	· 平均·標準偏差·	標準誤差(mear	nf=,rmsef=)	BEST8.	Ý
収益	・アップリフト(amountf=)	0	COMMA16.	,				
表示的	件数設定・ラベル表示設	定 10 ···				Plls		
डरेन <u>ा</u>	S OT - SIFFIOLING	10 ~	✓ 実数>	べりんの表示 🕑 10つ	ベルの表示	5140000	血に表示	
	リセット	この画面	面の指定を初期値	にリセットします				戻る

5.2.1.1. 言語(language=)

すべてのマクロ分析モジュールの共通パラメータ language= の値を指定します。実行ログメッセージ、 実行結果画面項目名に表示する言語(日本語か英語 のいずれか)を選択します。language=JAPANESE が 既定です。

5.2.1.2. グラフ表示言語(graph_language=)

グラフィック出力を行うマクロ分析モジュール
(dmt_crossplot, dmt_gainchart,
dmt_compareplot.dmt_upliftchart)の共通パラメータ
graph_language=の値を指定します。グラフィック
出力画面に表示する既定のタイトルや軸ラベル等に
表示する言語として用いられます。
graph_language=ENGLISHが既定です。※現行
WPSではグラフ上に日本語が表示できませんので、
graph_language=ENGLISHの設定を変更しないで
ください。

※分析データに日本語ラベルや文字変数ラベルが定 義されている場合は、グラフテキストのカナ化けを 避けるため、nolabel=Y オプションを指定します。

5.2.1.3. エンコーディング

SAS またはWPSの実行コマンド wps.exe に付随す る -encoding オプションを指定します。※ 現行では -encoding shift-jis 以外はサポートしていません。将 来、utf-8 エンコードに対応する予定です。(時期未定)

Data Bring New Insight to Your Business 5 メニュー画面の構成 5.2 オプション設定

5.2.1.4. グラフデバイス(dev=)

グラフィック出力を行うマクロ分析モジュールの共 通パラメータ dev= の値を指定します。dev=GIF が 既定です。それ以外には dev=JPEG を指定できます。

5.2.1.5. 数値の表示形式

aic 値(aicf=)、出現率・再現率(pctf=)、R2 乗 (r2f=)、 AR 値・ROC 面積(ar_rocf=)、平均・標準偏差・平均 値の標準誤差(meanf=)、収益・アップリフト (amountf=)をそれぞれ指定します。

5.2.1.6. アップリフトモデルの表示ラベル

アップリフトモデルの結果表示に使用する施策実施 群、対照群(施策非実施群)、およびその差を意味す る表示ラベルを設定します。適用場面に応じてドロ ップダウンリストから選択します。これ以外の表示 が必要であればコマンド実行方式でパラメータ指定 してください。

5.2.1.7. 表示するデータ件数の上限

各分析画面で 表示 ボタンを押すと表示されるデ ータの最大表示件数を設定します。

表示するデータ件数の上限 10

10	- -
1	
2	
5	
10	
20	
50	
100	
200	
500	
MAX	

既定は10です。データセットのコンテンツやデータ 値は HTML 形式で表示されます。この設定値を大き くすると表示に時間がかかります。

5.2.1.8. 変数ラベルの表示、値ラベルの表示

データセットのコンテンツやデータ値の表示時に変 数ラベル、値ラベル(本システムの **「ラベル付与画 面」**画面で、分析データセットの文字変数値に1対 1に対応させて定義した出力フォーマット)を使用 するかどうかをそれぞれ設定します。

📝 変数ラベルの表示 🛛 📝 値ラベルの表示

既定はいずれも使用するに設定しています。

※ この設定は、本システムの「ラベル付与画面」に おいてデータセットに定義された変数ラベル、値ラ ベルが存在するデータセット表示の場合にのみ適用 されます。

5.2.1.9. 別々の画面に表示

各分析画面において、表示 ボタンや 🎫 ボタン を押したときに出現する分析結果表示画面の操作モ ードを選択します。

📃 別々の画面に表示

チェックが外れた状態で、表示 ボタンや 胸 ボ タンを押すと、分析結果表示画面が出現しますが、 その表示画面を閉じないと次の操作ができないモー ドです。

チェックが入った状態では、表示 ボタンや 🌆素 ボタンを押すごとに別々の分析結果表示画面が出現 し、分析画面と表示画面いずれの画面も操作できる モードになります。ただし、分析画面を閉じると全 ての表示画面は閉じられます。

なお、表示するデータ件数の上限、 変数ラベルの表 **示、値ラベルの表示、別々の画面に表示**は各分析画面 にも配置されており、どの分析画面で変更しても変 更効果は残ります。

5.2.2 各分析画面で有効なオプション

以下のオプションは、煩雑さを避ける目的で、各分 析画面においては指定できないオプションです。必 要に応じて設定値を変更します。

5.2.2.1. 検証確保画面

オプション設定画面	×
共通 検証端保 クロス分析 結果表 モデル作成 統計モデル 比較プロット	
乱数ジード値 (seed=) 1 許容最大層別法 (maxerp=) 100	
11かっト この画面の北京会社現象値に11かっト」ます	戻る

Data Bring New Insight to Your Business 5 メニュー画面の構成 5.2 オプション設定

乱数シード値 (seed=1)

正の整数値を指定すると、同じシード値に対して常 に同じコンピュータ乱数系列が生成されます。一方、 値0を指定すると、生成されるコンピュータ乱数系列 は実行するたびに異なるものとなります。分析結果 の再現性を求める場合は、シード値は0以外に指定し てください。

許容最大層別数 (maxgrp=100)

非常にたくさんのカテゴリを持つ層別変数を誤って 指定した場合に実行を行わないようにするためのオ プションです。指定の値を超える場合はエラーとし て分析を中断します。問題がない場合は、値を大き くして再実行してください。

5.2.2.2. クロス分析

オプション設定画面
共通 検証確保 クロス分析 結果表 モデル(11成 統計モデル 比較ブロット
数値変数のカテゴライズ方法
非併合数值多イプ說明實数最大力テゴリ数 (nomergen=) STURGES 力テゴリ件数
最終力テゴリ併合(lastcatm=) 〇 Y ④ N
その他
分析に用いる文字タイプ説明変数の最大力テゴリ数 (maxcatn=) 1000
リセット この画面の指定を初期前面にリセットします 戻る

非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES)

個々の数値タイプ説明変数のカテゴライス方法に関 して、欠損値を除いた値の種類数がこの値以下の場 合、その数値説明変数は個々の値をカテゴリとみな すように指定します。デフォルトはスタージェスの 公式により計算された値です。

CEIL(1+log2(N))

ただし、CEILは整数値への切り上げ関数、log2は2を 底とする対数関数、Nは欠損値を除くデータ件数を表 します。

最終カテゴリ併合 (lastcatm=N)

数値タイプ説明変数のカテゴライズ方法に関して、 最後のカテゴリを最後から2番目のカテゴリに併合 するか否かを指定します。デフォルトはN(併合しな い)です。

「ノード分割アルゴリズム」の「(1)数値説明変数 のカテゴライズ」に記載したように、一般にタイが 存在する数値変数(たとえば年齢)の場合、カテゴ ライズ結果は最後にカテゴリのみ他のカテゴリより 件数がかなり少なくなる可能性があります。そのため最後のカテゴリを1つ前のカテゴリと併合する方がモデルの安定性が高まる場合があります。

分析に用いる文字タイプ説明変数の最大カテゴリ数 (maxcatn=1000)

この指定は文字タイプ変数が単なるオブザベーショ ン識別変数であって分析対象では無いとみなすため のパラメータです。デフォルトは1000。文字タイプ 説明変数のカテゴリ数が指定の数を超える場合、そ の文字タイプ説明変数は分析対象から除外されます。

5.2.2.3. 結果表

オプション設定画面	×
共通 検証確保 クロス分析 結果表 モデル作成 統計モデル 比較プロット	
全体带均衡加速带.(nole) ● Y ○ N	
リセット この画面の指定を行取時値にリセットします	戻る

全体平均値の表示 (no0=Y)

ターゲット値の全体出現率またはターゲット変数の 全体平均値の集計結果を表す行を最初の行に表示す るか否かを選択します。デフォルトは no0=Y (表示 する)です。no0=YまたはNを指定します。

5.2.2.4. モデル作成

オプション設定画面
共通 検証確保 クロス分析 結果表 モデル作成 統計モデル 比較プロット
教(確実約の方ゴライズ方法 新造タイプ採明実動の最大しきい確認 (spinptes) ○ 1 ④ 2
最初定一度风讨参方协协脱植在实践を为了与イズ(precat=) ⑧ Y ○ N 非併合批值外/式银明实脱最大力于引版 (nomereen=) ⑧ STURGES ○ 力疗引件数 最終力行引9併合 (lasteatm=) ○ Y ⑨ N
ノード最小件数が自動(AUTO)のとき 許容誤差率 (ergale=) 0.1 (推計値の標準課差に対する割合を指定します)
文楽検証 乱脱ジード値 1 個々の文薬検証ツーを保存する 〇 Y ④ N
その他 分析に用いる文字をイガ説明実験の最大カテゴリ数(maxcatre) 1000
リセット この画面の指定を打測的値にリセットします 戻る

数値タイプ説明変数の最大しきい値数 (splitpts=2) 数値説明変数が分岐候補説明変数に選択された場合

のカテゴリ併合方法を指定します。1または2を指定 できます。(2がデフォルト)。1を指定するとk個のカ テゴリを2つに分ける(k-1)通りの併合パターンのみ を計算し、採用された場合あるしきい値の前後に分 かれることになります。(すべての数値説明変数がデ フォルトで順序尺度とみなされます)2(デフォルト) の場合は、2つに分けるパターンと3つに分けて最初 と最後を一緒にするパターンの両方を計算し、最適 な併合パターンを探索します.(すべての数値説明変 数がデフォルトで循環尺度とみなされます)

最初に一度だけあらかじめ数値変数をカテゴライズ (precat=Y)

分析開始時にあらかじめ1度だけすべての数値タイ プ説明変数をまとめてカテゴライズする(Y)か否(N) かを選択します。precat=Y がデフォルト。 precat=N を指定すると、ノード分割を行うたびに数 値説明変数のカテゴライズが行われます。precat=N を指定するとモデルの精度が良くなる可能性があり ますが、相対的に実行時間が増加します。

非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES)

個々の数値タイプ説明変数のカテゴライス方法に関 して、欠損値を除いた値の種類数がこの値以下の場 合、その数値説明変数は個々の値をカテゴリとみな すように指定します。デフォルトはスタージェスの 公式で計算された値です。

CEIL(1+log2(N))

ただし、CEILは整数値への切り上げ関数、log2は2を 底とする対数関数、Nは欠損値を除くデータ件数を表 します。

最終カテゴリ併合 (lastcatm=N)

数値タイプ説明変数のカテゴライズ方法に関して、 最後のカテゴリを最後から2番目のカテゴリに併合 するか否かを指定します。デフォルトはN(併合しな い)です。

一般にタイが存在する数値変数(たとえば年齢)の 場合、カテゴライズ結果は最後のカテゴリのみ他の カテゴリより件数がかなり少なくなる可能性があり ます。そのため最後のカテゴリを1つ前のカテゴリと 併合する方がモデルの安定性が高まる場合がありま す。

許容誤差 (err_rate=0.1)

err_rateは mincnt=AUTO 指定の場合に有効です。 0<err_rate<1 の範囲で指定可能です。1に近い値を指 定することは、分類木モデルでは許容する誤差範囲 (標準誤差)を予測値(0から1の範囲であることに 注意)と同じ程度に設定することを意味しますので、 予測値のブレが非常に大きなモデルが出来てしまう 危険性が高くなります。逆に0に近い値を指定するこ とは、相対的に誤差が小さいノードを生成すること につながりますが、ターゲット出現率の値が0または 1に近いノードは非常に多くのノード件数が必要と なりますので、そのようなノードは生成されにくく なります。

回帰木モデルの場合も平均値の標準誤差が平均値の err_rate 倍に収まるために必要な件数を計算して mincntの値を動的に決定します。

入力データセットの件数があまり豊富で無い場合は、 このパラメータ値を大きくするか、mincnt=指定に定 数値を指定します。

乱数シード値 (seed=1)

交差検証実行時のデータ分割に用いる乱数シード値 を指定します。正の整数値を指定すると、同じシー ド値に対して常に同じコンピュータ乱数系列が生成 されます。一方、値0を指定すると、生成されるコン ピュータ乱数系列は実行するたびに異なるものとな ります。分析結果の再現性を求める場合は、シード 値は0以外に指定してください。

個々の交差検証ツリーを保存 (Y/N)

交差検証実行時に作成されるfold=パラメータ指定数 個の個々の交差検証用ツリーモデルをモデル管理画 面に登録して参照可能とするか否かを指定します。 Nがデフォルトです。デフォルトではoutmodel=パラ メータに指定した分析結果出力モデルと出力モデル 名の後に _CV の接尾辞のついた検証用モデル形式 データセットの2つのツリーモデルが出力されます。

Yを指定すると、上記2つのツリーモデルの他に、出 カモデル名の後に _CV1, _CV2, ..., _CVfold (fold はfoldパラメータの値)の接尾辞が付いた個々の交差 検証モデルも出力されます。これらの出力ツリーモ デルは、モデル分岐表作成やゲインチャート作成な ど、他のモデルと同様の操作が可能です。

なお、個々の交差検証ツリーを保存(Y/N)の指定に関わらず、outmodel=パラメータに指定した分析結果出 カモデルが入ったディレクトリ内に以下のデータセットが保存されます。(「設定」画面の「ツリーモデルディレクトリ」の「表示」ボタンから検索することができます。)

分析に用いる文字タイプ説明変数の最大カテゴリ数 (maxcatn=1000)

このパラメータは文字タイプ変数が単なるオブザベ ーション識別変数であって分析対象では無いとみな すためのパラメータです。デフォルトは1000です。 文字タイプ説明変数のカテゴリ数が指定の数を超え る場合、その文字タイプ説明変数は分析対象から除 外されます。2~5000の範囲で指定可能です。

5.2.2.5. 統計モデル

Data Bring New Insight to Your Business

説明変数をモデルに入れるときの有意確率基準 (slentry=0.15)

モデルに含まれていない説明変数の中からモデルに 追加するときの有意確率基準を指定します。

説明変数をモデルから除くときの有意確率基準 (slstay=0.15)

モデルに含まれている説明変数の中でモデルから除 くための有意確率基準を指定します。なお、slstayは モデルに残るための基準という意味です。

切片項 (intercept)

モデルに切片項パラメータを含むか否かを指定しま す.(含む(「あり」)がデフォルト)

ロジスティックモデルの最大反復計算回数 (maxiter=100)

最尤法によるパラメータ推計時の最大反復計算回数 を指定します。反復回数が十分で無い場合、最尤法 によるパラメータ推計は収束に至らない場合があり ます。変数選択を指定した場合は、

各変数選択段階でのパラメータが収束しないまま、 次の変数選択段階に進む場合があります。このよう な場合、このオプションの値を大きくするとパラメ ータ推計結果が収束する場合があります。

5.2.2.6. 比較プロット

図に表示する上限オブザベーション数 (plotobs=2000) data= 入力データセットに含まれるデータから図に 表示する上限オブザベーション数を正の整数値で指 定します。デフォルトは5000です。入力データセッ トのオブザベーション数がこの上限を超える場合は ランダム抽出を行い上限数のデータのみプロットの 対象にしています。なお、R2乗値の計算は全オブザ ベーションから計算しています。

5.3 パラメータのロード・保存

5.3.1 保存指定のロード

(特定) を押すと、メニュー画面を終了する際に **_LASTSAVE_**という名前で自動保存された、または 次の「現金標準の」を押して明示的に名前を付けて保 存した各分析画面の全部の入力パラメータセットを、 ロードまたは名前の変更または削除します。

操作したいパラメータ保存アイテム名をクリックす ると、操作ボタンが表示されますので、表示・名前 の変更・削除の操作を行います。

ロード 選択したパラメータセットを有効にしま

す。

表示 選択したパラメータセットの内容をリス

ト表示します。

📋 parm.txt - メモ帳		
ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)		
<pre>//rootfolderC:TUBersWDITeamp_data //exefileC:TPogram FileWorld Programming WES 3Fbin#wps.exe //SASMACFILEC:TUBersFWDITENDT_TEED1.SFASMACR.wpccat //aut.cross_data~SAMP_DATA //dml_cross_rfls</pre>		^
//dmt_cross_farset=11 //dmt_cross_reseinenneijukko kazoku_kosei sakureki kimmusaki syoshu shokushu nemsk //dmt_cross_oressive_cross2 //dmt_cross_oressive_ress	u DM	
//dmcrosstab_dropx= //dmcrosstab_dropx= //dmcrosstab_pros //dmcrosstab_pros //dmcrosstab_prol=1		~

パラメータセットを表示した例

設定画面や各分析画面の入力項目ごとに値が保存さ れています。

名前の変更	選択したパラメータセットの名前を変
更します。	

パラメータリネ	メーム 指定画面	×
パラメータの	名前変更	
名前	日時	
LASTSAVE	2016年08月02日17時01分	
必要であればメモを書き込んでください		
[CROSS] data=SAMP_DATA,y=flg,x=sei nenrei jukyo kazoku kosei		
data=SAMP_DATA,y=flg,x=sei nenrei	jukyo kazoku kosei gakureki 🛛 🗸	
変更	戻る	

```
削除 選択したパラメータセットを削除します。
```

なお、リストボックスの上部にある、

名前	保存日時
	УE

ボタンを押すと、それぞれの項目の並び順にアイテ ムをソートして表示できます。(押すごとに昇順、降 順が切り替わります)

5.3.2 現在の指定の保存

現在の指定の を押すと、最後に実行した状態で残され

ている、全分析画面の全部の入力パラメータセット を、名前を付けて新規保存します。

名前	日時
	2017年02月20日10時34分
必要であればメモを追記してく	だざい
[CROSS] data=SAMP_DAT	A(where= DATA(where=(DM=(0())))
jukyo kazoku_kosei gakure	ski kinmusaki gyoshu shokushu nenshu 🗸

※ 既存の名前は指定できません。先に削除してから 指定してください。

※ メモ欄には既定でクロス分析[CROSS]で始まる) とツリー作成(ITREE]で始まる)で最後に実行した パラメータが表示され、これを見ると、どのデータ でどの指定を行ったかがわかります。メモを入力す る場合は、これらの情報は消さないで、末尾に追記 することをおすすめします。

5.4 分析ディレクトリのファイル表示

本システムの「設定」画面の指定、および各「分析」 画面の実行により生成されるディレクトリ・ファイ ル等は以下のとおりです。

「設定」画面において、分析ディレクトリの各ディレ クトリ内にファイルやディレクトリが存在する場合 は
脉
ボタンが表示されます。必要に応じて、 保存されているディレクトリやファイルの確認が可 能です。※ htmlディレクトリ内のサブディレクトリ は名前の変更や削除は行わないでください。また、 cross, data, parmset, scorecode, statmodel, treemodel の各ディレクトリについては、ディレクト リ内に保存された個々のデータやモデルをディレク トリ単位に削除することは問題ありませんが、ディ レクトリ内の個々のファイルの名前の変更、削除、 内容の編集等を行うとシステムが起動しなくなる恐 れがあります。もしも、既存分析ディレクトリのフ ァイル構造に問題が発生したときは、新しい分析デ ィレクトリを作成し、その中に使用したい既存のデ ータやモデルデータセットファイルをコピーして用 いてください。

パラメータセットの名前変更画面の例 名前とメモの項目を変更可能です。

Data Bring New Insight to Your Business		
Data bring New Insight to Your Dusiness	5 メニュー画面の博成	5.5 谷分竹画面の処埋の流れ

以下の図は、設定画面で作成した分析ルートディレ ィレクトリと主要なファイルの一覧を示しています。 クトリ (ここでは root と表示)の下に作成されるデ

分析ディレクトリをルートとするDMTデシジョンツリーGUI実行モードディレクトリー覧

5.5 各分析画面の処理の流れ

各分析画面にある 新 ボタンを押すと、画面指定 により生成されたSASコードがパラメータとしてシ ステムに保存され、分析ルートディレクトリの下に ある pgm.sas ファイルにコピーされます。 pgm.sas ファイルへのSASコードのコピーが終わる

と、ただちに submit_sas.bat (SAS上で動かす場合)、 または、submit_wps.bat (WPSの場合) が起動し、 SASサーバまたはWPSサーバがバッチ型動作モード で pgm.sas に書かれたSASコードを実行に移しま す。なお、incpgm.sas ファイルは pgm.sas ファイ ルのを %inc コマンドで読み取って実行するように 指定した SASステートメント が記述されており、

Data Bring New Insight to Your Business 5 メニュー画面の構成 5.6 サンプルデータ

submit_sas.bat (SASの場合)、または
submit_wps.bat (WPSの場合) はいずれも
incpgm.sas をバッチ実行するように指定したバッ
チファイルです。

5.6 サンプルデータ

👢 root 分析ディレクトリ(指定されたディレクトリ) 🗕 👢 sample サンプルデータ保存ディレクトリ 🗕 起 samp_data.csv 12項目、2,000件の分析用サンプルデータ(csv形式) 12項目、2,000件の分析用サンプルデータ(WPSデータセット形式) SAMP_DATA.wpd = 🚯 samp_label_fmt.csv 各項目と文字変数値に対するラベル定義ファイル(csv形式) 各項目と文字変数値に対するラベル定義ファイル(SASプログラム形式) ·ᡂ samp_label_fmt.sas = 🚯 test_data.csv 12項目、2,000件のモデル検証用テストデータ(csv形式) TEST_DATA.wpd 12項目、2,000件のモデル検証用テストデータ(WPSデータセット形式)

5.7 分析画面

「起動」画面からいずれかの「分析」画面選択ボ タンを押すと、各分析画面に切り替わります。

5.7.1 ①データ抽出

データ読込 CSV形式、またはSASデータまたは

WPSデータ形式の分析対象データを本システムで利 用できるように、分析ディレクトリに読み込みます。 SASデータまたはWPSデータを読み取った段階では、 データに定義されている変数ラベルはコピーされま すが、変数値に定義されたユーザ定義フォーマット はすべて削除されます。あらためて、 ラベル付ち 画面 で文字変数値に対する1対1のフォーマット (これを 値ラベルと呼んでいます。)を定義してください。

データ加工 入力データを加工(変数のタイプ変換、

加工変数の作成、オブザベーションの条件抽出など) を行います。

特に、本システムでデータ分析を行う場合は、説明 変数のタイプ(文字タイプか数値タイプか)は分析 上、また値ラベル付与上重要です。値が少数の離散 的な値しかとらないような数値変数があれば、この 画面で文字タイプに変換しておくと良いでしょう。

ラベル付与 分析結果を分かりやすく表示するた

めに、変数名と文字変数の個々の値に1対1で対応す る説明ラベルを定義します。

特定の決まりで入力されたCSV形式のファイル、も しくは SAS言語のLABELステートメント、FORMAT ステートメント、FORMATプロシジャのコードを入 力に用いることが可能です。

検証確保 分析対象として入力したデータをラ

ンダムに2分して、モデル作成用データとモデル検証 用データを確保します。

データ管理 システムに保存したデータの名前・作

成日時・メモ(作成方法など)を表示し、内容の確認・名前の変更・削除を行います。

なお、<u>データセット名の変更や削除はそのデータセ</u> <u>ットを参照している他のプログラムやパラメータ値</u> には波及されませんので、ご注意ください。

5.7.2 ②項目分析

クロス分析 ターゲット変数と説明変数間の関連

性を分析し、関連の強い順(AIC)に説明変数のカテ ゴリ(数値変数は範囲)別のターゲット変数の分布 (ターゲットがクラス変数の場合は出現率、連続変 数の場合は平均・標準偏差)を集計します。ターゲ ット変数との関連性のみならず、デシジョンツリー

69 / 215

「設定」画面において、

サンプルデータの作成 ボタンを押すと、本

マニュアルの実行例に示したサンプルデータを、分 析ディレクトリの下の SAMPLE ディレクトリに作 成します。

サンプルディレクトリのファイル一覧

分析に用いる説明変数の状況(カテゴリの存在範囲 や件数バランス、欠損値の割合など)を事前チェッ クすることができます。

結果表	クロス分析結果を表の形で表示しま
す。	

結果図 クロス分析結果を図示します。

結果管理 クロス分析結果データセットの名

前・作成日時・メモ(作成方法など)を表示し、内 容の確認・名前の変更・削除を行います。

なお、結果データセット名の変更や削除はその結果 データセットを参照している他のプログラムやパラ メータ値には波及されませんので、ご注意ください。

5.7.3 ③モデル作成表示

モデル作成 モデル作成用データを使ってデシジ

ョンツリーモデルを作成します。

分岐表 作成したデシジョンツリーモデルを

分岐の仕方がわかる形式で表示します。

作成したデシジョンツリーモデルを ノード表

終端ノードごとの説明変数の組合せ定義や件数比 率・ターゲット件数比率 (ターゲット再現率)・ター ゲット出現率を出現率の大きさの順に並べて表示し ます。

モデル管理 作成したモデルの名前・作成日時・

メモ(作成方法など)を表示し、内容の確認・名前 の変更・削除を行います。

なお、モデルデータセット名の変更や削除はそのモ デルデータセットを参照している他のプログラムや <u>パラメータ値には波及されません</u>ので、ご注意くだ さい。

統計モデル モデル作成用データを使って統計モ デルを作成します。

5.7.4 ④モデル検証

ゲイン・収益 モデルの予測値の順位と実際のター

ゲット出現有無との関連の強さを表すゲインチャー ト(CAP曲線)やROC曲線を描きます。また、損益 見込み額を計算する収益チャートを描きます。分類 木モデル、または出現率の差を目的変数とする差分 分類木(アップリフト分類木)の場合のみ作成可能 です。

比較プロット 実際値とモデルの予測値との誤差が

把握できる散布図を描きます。分類木、回帰木、ア ップリフトモデル、いずれの場合でも作成可能です。

正誤表

ターゲットが出現するかしないかの

予測と実際の2*2のクロス度数集計表を作成し、正答 率を表示します。分類木モデルの場合のみ作成可能 です。

アップリフト図 実施データと対照データそれぞれに

ついて、モデル予測値に基づくツリーノード別実施 効果(累積アップリフト)を図示します。

5.7.5 ⑤モデル調整

枝刈り モデルの当てはまりを改善する目的

で、当てはまりの悪いツリーモデルの一部を削除し、 モデルを簡素化します。

枝接ぎ モデルの精度や納得性を高める目的

で、指定の終端ノードに別のツリーモデルを接ぎ足 して、モデルを複雑化します。

モデルの分岐の仕方・形状は変えず 予測値修正

に、新たなデータにモデルを適用したときの、ノー ドごとのターゲット出現率またはターゲット平均値 を、新たな予測値とするモデルを作成します。

5.7.6 ⑥モデル適用

予測付与 モデルをデータに適用し、各オブザベ

ーションに対して、所属ノード番号や予測値(分類 木の場合はターゲット出現率、回帰木の場合はター ゲット変数平均値)を付与します。

コード保存 モデルからモデル予測値を計算する

SASプログラムコードをファイルに出力します。

Data Bring New Insight to Your Business 1 5.7 分析画面

コード管理 モデル予測値を計算するSASプログ

ラムコードの名前・作成日時・メモ(作成方法など) を表示し、内容の確認・名前の変更・削除を行いま

6. 分析画面の構成

各分析画面は、基本的に、以下の図に示すように、(A) パラメータ指定領域、(B) コードとログ表示領域、(C) コマンド領域、(D) 表示画面の制御領域の4つの領域で構成されています。 (画面は実際とは多少異なる場合があります。)

す。

(A) パラメータ指定領域

			DMT_TREE 指定	画面		×
	デシ	ジョンツ	リーモデルイ	乍成		入力指定のリセット
入力データ (*data=)	SAMP_DATA		表示 where条件	DM 7	= 🗸 ″ 1″	
対照データ(control=)	SAMP_DATA		表示 where条件	DM V	= 🗸 "0"	
入力検証データ(test	data=) TEST_DATA	۱	表示 where条件	DM	= 🗸 " 1"	
対照検証データ(test	control=) TEST_DATA	i	表示 where条件	DM	= 🗸 "0"	
交差検証 (testdata=	cV) ΟΥ ⊛ Ν					
ターゲット変数(*y=)	flg		ターゲット値(target=)	″ 1″		
説明変数 (*x=)	sei nenrei jukyo kazo nenshu DM	ku_kosei gakurek	i kinmusaki gyoshu sho	kushu 🔨 .	ABC. 1 sei C 性別 2 nenrei N 年齢	順に並べ替え
除外する説明変数 (dropx=)	KAZOKU_KOSEI KINM	IUSAKI NENREI	NENSHU	Ŷ	3 juk yoC 1 壬店 4 kazok u_koseiC 5 gak urek iC 最新 6 kin musak iC 勤	:家族構成 冬学歴 」務先形態
順序尺度説明変数(ordinalx=)			0		種
循環尺度説明変数(cyclicx=)			÷	9 nenshu N 年収 10 DM C プロモー 12 kingaku N 購	- ション 入金額
最小ノード件数 (mind	ent=) 🛛 🔿 AUTO (● ノード件数 🔡	100		[517]	
最大分岐レベル (max	dv⊨) 5 👻 出力	ツーモデル (outm	odel=) _tree2		表示	
住成コード」						
libname data "C#U libname model "C# options nofmterr, libname control "C: libname library (dat %dmt tree(data=dat (DM="0")),y=flg,tarr x=sei nenrei jukyo ,dropx=KA2OKU_KC	sers¥DMT¥samp_data 'Users¥DMT¥samp_dat ¥Users¥DMT¥samp_da a): a SAMP_DATA(where≕ get≂″1″″ kazoku koseigakureki (SEIKINMUSAKINENF	data¥SAMP_DAT a¥treemodel¥_tre ta¥data¥SAMP_D [DM=″1″)),controi kin musak i gyosh REI	'A": e2": =controISAMP_DATA(∞ ⊔ shokushu nenshu DM	nhere=		
表示す [ログ]	るデータ件数の上限 1		変数ラベルの表示 ▼ 別々の画でに表示	値ラベルの表示	実行 結果 表示	前回表示 戻る
注意: outmodel=_tr	ee2 指定したデータセット	は存在します。実行	インマン (デすると) きされます!		Ĺ	
(B)コードとロ	」 グ表示領域	(D)表:	示画面の制御領	〔 域	(C)コマ	 ンド領域

Data Bring New Insight to Your Business 6 分析画面の構成 6.1 (A) パラメータ指定領域

6.1(A) パラメータ指定領域

各分析画面に固有のパラメータを指定する領域です。 以下の要素(オブジェクト)が配置されています。

6.1.1 パラメータ(パラメータ名=)

(入力データ(*data=) など) 入力するパラメータの 日本語ラベル、および、カッコの中にDMTデシジョ ンツリープロダクトの該当するマクロ定義の中のパ ラメータ名を表示しています。カッコの中の*(アス タリスク)で始まるパラメータ名は、マクロ定義に おける必須入力パラメータを表します。

6.1.2 テキストボックス

(____) パラメータ入力値を表示します。 テキス トボックスに直接入力可能な場合と、テキストボッ クスのすぐ右に配置されている 選択**ボタン** (_____) を押して入力しなければならない場合が あります。また、テキストボックスの背景色が黄色・ 赤色・水色の場合は、それぞれ、以下の意味を表し ます。

黄色背景()) パラメータ入力が必須、かつ優 先的に入力しなければならないことを表します。 赤色背景(samp.data など) パラメータ値が無効で あり、値を変更しなければならないことを表します。 水色背景(tree など) パラメータ値に指定された データが既に存在しており、そのまま実行するとデ ータの内容が上書きされることを警告しています。 同時にデータ内容を表示できることも表しています。

6.1.3 選択ボタン

(____) パラメータ入力をボタンで行わなければ ならない場合、または行える場合に配置されていま す。押すとデータセットを選択するためのエクスプ ローラ画面、データやモデルなどをロードする画面、 変数や値を選択するリストボックスなどが開きます。

6.1.4 既存のデータやモデルのロード画面

選択ボタン(しーーー)を押すと、システムに保存されているデータ、クロス分析結果データ、ツリーモ デルをロードする画面が出現する場合があります。

 Image: Base of the second secon

6.1.5 リストボックス

(下図 など) 変数や変数値を指定する選択ボタン (____) を押すと出現するアイテム選択リストで す。

2 kinmusaki C 勤務先形態
3 gakureki C 最終学歴
4 kazoku_kosei C 家族構成
5 sei C 性別
6 nenreiN年齢
7 shokushu C 職種
8 gyoshu C 業種
9 nenshu N 年収
10 jukyo C 住居
[クリア]

選択できるアイテム数は1個のみの場合と複数個選 択可能の場合があります。

複数個選択可能な場合は、**拡張選択**(ShiftキーやCntl キーを押しながら複数アイテムを選択する操作)が 可能です。また、リストの最後の[**Dリア**]を選択して セット または 追加 を押すと、テキストボックスの
Data Bring New Insight to Your Business 6 分析画面の構成 6.1 (A) パラメータ指定領域

内容がクリアされます。

リストボックス でアイテム選択後、選択ボタン (____) は セットボタン (セット) または 追 加ボタン(追加)のいずれかに変わります。

6.1.6 セットボタン

(セット) テキストボックスの値が 選択されたア イテムに置き換わります。この表示に変わるテキス トボックスは、基本的に、手入力不可です。

6.1.7 追加ボタン

(追加) テキストボックスの値の末尾に選択され たアイテムが追加されます。(アイテム間の区切り文 字としてブランクが入ります) この表示に変わるテ キストボックスは 手入力可能 です。

6.1.8リストボックスの上にソートボタン

(ABC順に並べ替え) が配置されている場合がありま す。ソートボタンを押すと、押すたびに、リストボ ックス のアイテムがアルファベット順、またはその 逆順に、並べ替えられて表示されますので、選択し たいアイテムを見つけやすくなります。

6.1.9 表示ボタン

(表示) 指定されたデータが存在する場合に出現 し、押すとデータ内容が表示されます。表示画面は (D) 表示画面の制御領域のコマンドによって設定さ れます。

6.1.10 ラジオボタンとチェックボックス

Y または N のような排他的選択を行うパラメータ の選択の場合に配置されています。排他的でない ON/OFF パラメータセットの場合は、チェックボッ クス(☑) が配置されている場合があります。

6.1.11 where 条件式の指定

いくつかの分析画面においては、入力データセット に対してwhere条件式によるオブザベーション抽出 指定が可能です。

where条件には変数名 と 演算子 と 値 の3つを指 定します。

where条件の変数名部分の指定は、選択ボタンを押し て出現する入力データセットに含まれる変数リスト

から1つの変数を選択します。選択された変数名が テキストボックスに表示されます。

演算子の部分は、コンボボックスから比較演算子を 1つ選択します。ただし、最後の空白を選択すると、 比較演算子を選択されません。このときは、右側の 入力可能なテキストボックスに独自の条件式(例え ば、 in 演算子や contains 演算子を使った抽出条件 式)を入力指定できます。

値の部分は、選択ボタンを押して値を1つ選択するこ とできますが、入力データセットのオブザベーショ ンが多いと値の検索に時間がかかる場合があります。 テキストボックスに直接値を入力することもできま す。(直接入力する場合は、文字値の場合は値を引用 符で囲んで指定します)

6.2(B) コードとログ表示領域

[生成コード] にはパラメータを指定していくに従っ て生成されるマクロ呼び出しコードが表示されます。 入力パラメータが正しくコードに反映されているか どうか確認できます。また、SASディスプレイマネ ージャまたはWPSワークベンチで実行するために、 生成されたコードをコピーしておくこともできます。

[ログ] には実行後のバッチジョブログやパラメータ 入力エラーや警告その他のメッセージ、およびWPS 実行中のログが表示されます。※ SAS実行ログは実 行中に出現する 「SAS Message Log」画面に表示さ れます。

6.3 (C) コマンド領域

実行、戻る、前回表示、結果表示(モデル作成画面・予 測値付与・コード保存のみ)、入力指定のリセット など のボタンが配置されています。

6.3.1 実行

… 指定のパラメータ条件で実行を開始します。
 実行すると、実行結果の成否(エラーの有無)や中
 断指定の有無にかかわらず、最新のパラメータセッ
 トの値は実行時の設定値に上書きされます。

6.3.2 実行の中断

実行ボタンを押してしばらくすると(1秒後に設定)、

ボタンの表示が 実行 から 中断 に変化します。中 断 と表示されているときにボタンを押すと 中断す るかどうかを尋ねる ダイアログボックス が出現しま す。中断したい場合は、はい(Y) を押してください。

ただし、はい(Y) を押してから中断処理を行ってい る間にSASまたはWPSの実行が完了した場合は、実 行終了のメッセージが表示されます。

6.3.3 前回表示

... 図表を表示する画面の場合は、最後に表示した htmlファイルは、分析フォルダの下のhtmlディレクト リに保存されており、再実行することなく 前回表示 ボタンを押すことで 再表示することができます。

6.3.4 戻る

... ターゲット変数名、ターゲット変数値、説明変 数リストなどを選択するリストボックス表示中にこ のボタンを押すと、リストボックスを閉じて選択中 の状態を解除します。そうでない場合は、その「分析」 画面を終了し「メニュー」画面に戻ります。なお、 ☑ ボタンは、常に、アクティブな画面を終了させます。

6.3.5 入力指定のリセット

... その分析画面の指定パラメータを一旦すべて初

Data Bring New Insight to Your Business7 表示画面(ブラウザ)の操作6.4 (D) 表示画面(ブラウザ)の制御領域

期値にリセットします。ただし、リセットした段階 ではまだパラメータセットは保存されていません。 (実行ボタンを押さない限りパラメータセットは変 更されません。)分析画面を終了して起動画面に戻っ てから再度同じ分析画面に切り替えるとリセット前

のパラメータが復元されます。

リセットボタンは実行やパラメータ入力に何か問題 が起きた際に押して、パラメータを再入力してくだ さい。

6.4 (D) 表示画面(ブラウザ)の制御領域

(A) パラメータ指定領域に配置された表示ボタン、 または(B) コマンド領域に配置された前回表示ボタ ンを押したときに表示するデータ件数やラベル表示 の有無、そして出現する表示画面(ブラウザ)のモ ードを制御します。

入力データや出力データの表示オブザベーション件 数は、下部にある、表示するデータ件数の上限で制御し ます。コンボボックス 下矢印のボタン (▼)を押す と選択候補アイテムが表示され、その中から表示す るデータ件数値を選択します。

▼ 変数ラベルの表示 ▼ 値ラベルの表示 のチェックボッ クスにチェックの有無により、変数ラベル、値ラベル ル(個々の文字変数値に定義されたフォーマットの こと)が定義されていた場合にそれらを用いるか否 かを選択できます。

なお、表示するデータ件数の上限 指定と ② 変数ラベルの表示 ③ 値ラベルの表示 指定は、分析結果 を表すクロス分析結果データ、モデル作成結果デー タ、ゲインチャートなどの座標値データおよび予測 値付与スコアコードファイルの表示には適用されま せん。

□ 別々の画面に表示 チェックボックスにチェックを入

れると、その分析画面において、 表示 や 前回表示 を

押すたびに新しい画面がオープンし、複数の結果を 同時表示できるようになります。ただし、その分析 画面を閉じるとすべての表示画面は自動的にクロー ズされます。

7. 表示画面 (ブラウザ)の操作

各分析画面の表示ボタンまたは前回表示ボタンを押すと、リクエストに応じて、入力データの内容、分析結果の図表、分析結果ファイルの内容などを表示する画面(ブラウザ)が出現します。

表示画面(ブラウザ)は、以下のように操作できま す。

7.1 画面の拡大・縮小およびスクロール

画面右下角にマウスカーソルを置くと、カーソルの 形状が、に変わります。このとき、マウスをドラグ することにより、表示画面の大きさをテンポラリに 変更できます。画面最上部のウインドウタイトル(表 示と書かれた部分)をダブルクリックすることによ り、「全画面化」/「元の大きさに戻す」の切り替え ができます。また、画面右側に配置されているスク ロールバーを動かすことにより、表示をスクロール できます。

7.2 表示の拡大・縮小

画面右上に配置されているコンボボックスの ▼ を押 して、表示の拡大率を変更できます。

Data Bring New Insight to Your Business

1

· · · · 70%

1 00%	-
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
95%	
1.00%	
110%	
120%	
130%	
140%	
150%	
	-

拡大率を小さくすると、画面に表示できる情報を増 やすことができます。

なお、任意の拡大率を直接入力することもできます。 (例:121%と入力しエンターキーを押します)直前 に変更された拡大率は保持されます。

7.3 過去の表示項目の再表示

C#Users#DMTVsamp_dataVhtml#tree_treetabVdmt_treetab.html

タイトルバーの下に配置されているコンボボックス

は現在表示されているファイルのhtml出力ファイル のフルパスを表しています。このコンボボックスバ ーを押すと、本アプリケーションを起動してから表 示したすべての表示履歴がリストされますので、任 意の表示履歴を選択することにより再表示可能です。

表示リクエストは、すべて分析ディレクトリ

¥html¥tempフォルダの中に一時的にコピーされ、起 動画面を閉じるまで保持され、 アプリケーションを 終了すると、分析ディレクトリ**¥html¥temp**フォルダ は初期化されます。 なお、 **別々の画面に表示** にチェックを入れてから表示させた個々の画面については、表示時点以前の履歴のみを保持しています。

7.4 表示画面の複数表示

別々の画面に表示 にチェックを入れた状態で表示または再表示をリクエストすると、表示画面が出現された後、表示画面を閉じなくてもその分析画面の別の指定を行うことができるモードになります。 再び表示を行い、その画面に別の分析結果を履歴から選択表示させることにより、複数の分析結果を同時に閲覧できるので便利です。

各画面は個別に閉じることができますが、表示画面 を呼び出した分析画面を閉じるとすべての表示画面 も閉じます。

7.5 表示画面のクローズ

表示画面を閉じるには画面右上の X ボタンを押し ます。 別々の画面に表示 のチェックが外れた状態で オープンした表示画面は閉じないと先に進めません。 別々の画面に表示 にチェックを入れた状態でオープ ンした表示画面は放置したままで分析画面の別の指 示を行うことができますが、分析画面を閉じると自 動的にすべてクローズされます。

8. 分析画面 ①データ抽出

データ入力・加工・変数ラベルや値ラベルの定義を行います。

8.1 データ読み込み

データ読込み 指定画面 ▲
データの読込み 入力指定のリセット
 ○ 入力データファイル (CSV形式) ▲ 表示 □ 1行目(ご変数ラベル(半角256文字以内) □ 2行目(ご変数の型(文字型は'C'などのアルファベット、数値型は'1'や"(ブランク)が入れてあること)
○ 入力WPSデータセット or SASデータセット
保存データ名 表示 表示するデータ件数の上限 ✓ ○変数ラベルの表示 ○値ラベルの表示 実行 戻る
^
v .

8.1.1 概要

本アプリケーションで分析を行うデータセットを入 力指定します。CSV形式(カンマで区切られた可変 長テキスト形式)ファイル、またはSASではV7以降 のSASデータセット(sas7bdatファイル形式)、WPS ではWPSデータセット(WPDファイル形式)を読み 取ることができます。CSVファイル入力の場合は、1 行目が項目名を表すかどうかを自動判定します。

8.1.2 指定方法

この機能はマクロモジュールには含まれていません。 GUI実行モードでのみ指定可能です。

(必須指定)

以下の指定は必須です。ただし、(1),(2)はいずれか1 つを選択します。

(1) 入力データファイル (CSV形式)

…. CSV形式ファイルを入力する場合に選択し ます。テキストボックスの右の … ボタンを押 してファイルを選択します。テキストボックス にファイルのパス名が表示されると、表示 ボ タンが出現し、表示ボタンを押すことにより、 ファイルの中身を確認できます。

(2) 入力WPSデータセットorSASデータセット …WPSデータセットまたはSASデータセット 形式ファイルを入力する場合に選択します。テ キストボックスの右の … ボタンを押して WPSデータセットまたはSASデータセットを 選択します。テキストボックスにファイルのパ ス名が表示されると、表示 ボタンが出現し、表 示ボタンを押すことにより、ファイルの中身を 確認できます。

保存データ名 … 本システムに保存するデータセット名を指

定します。入力データファイル、または入力 WPSデータセットまたはSASデータセットの 拡張子を除いたファイル名が有効なSAS名であ れば、ファイル選択時に自動入力されますが、 任意の有効なSAS名に変更できます。

(任意指定)

以下の指定は任意ですが、(1)の入力に伴い、正しく データ読み取りを行うためにチェックが必要な場合 があります。

1行目に変数ラベル(半角256文字以内)

…入力CSVファイルの最初の行に変数名もしく は変数ラベルが入っているかどうかを指定しま す。ただし、入力CSVファイルを選択した後に、 1行目と2~20行目までのデータ項目を比較して、 1行目が項目名を表すかどうかをシステムが自 動判定します。項目名を表すと判断した場合、 自動的にこのチェックボックスにチェックが入 ります。

もしも自動判定が正しくない場合は手動で制御 してください。

8.1.3 イニシャルディレクトリ

CSVファイル、またはWPSデータセットまたはSAS データセットの選択画面のイニシャルディレクトリ はユーザプロファイル¥分析ルートディレクトリ ¥sample に設定しています。他のディレクトリのフ ァイルを入力したい場合は、ダイアログの左側のド ック部分から目的ファイルのディレクトリを辿って 選択してください

8.1.4 変数名、変数ラベル、フォーマットについて

CSVファイル読み取りの場合の保存データセットの 変数名は、1行目が変数名で無い場合、または無効な 変数名の場合、VARk (kは項目の定義順序を表す、 k=1,2,...)という名前の変数名がつきます。無効な変 数名 (例えばabc*123)の場合は、"VARk" + " + "abc*123" という変数ラベルが設定されます。

(例1)

ID,店舖,商品ITEM,amount	
0001,東京,A4ノート,100	
0002,大阪,万年筆,50	

上記CSVファイルを読むと、変数名は ID, VAR2, VAR3, amount となり、変数 VAR2, VAR3 には そ れぞれ、"VAR2 店舗", "var3 商品ITEM" という変数 ラベルが付きます。

Variables in Creation Order							
Number	Variable	Туре	Len	Pos	Format	Informat	Label
1	ID	Char	5	0	\$5.	\$5.	
2	VAR2	Char	4	5	\$4.	\$4.	VAR2 店舗
3	VAR3	Char	8	9	\$8.	\$8.	VAR3 商品ITEM
4	amount	Char	6	17	\$6.	\$6.	

Obs	ID	VAR2 店舗	VAR3 商品ITEM	amount
1	0001	東京	A4ノート	100
2	0002	大阪	万年筆	50

1行目がデータの場合は、すべての変数名が VARk となり、変数ラベルはつきません。

(例2)

0001,東京,A4ノート,100 0002,大阪,万年筆,50

Variables in Creation Order						
Number	Variable	Туре	Len	Pos	Format	Informat
1	VAR1	Num	8	0	BEST12.	BEST32.
2	VAR2	Char	4	16	\$4.	\$4.
3	VAR3	Char	8	20	\$8.	\$8.
4	VAR4	Num	8	8	BEST12.	BEST32.

Obs	VAR1	VAR2	VAR3	VAR4
1	1	東京	A4 ノート	100
2	2	大阪	万年筆	50

WPSデータセットまたはSASデータセット読み取り の場合は、読み取り後のデータセットの変数名、変 数ラベルはそのまま入力データセットの変数名、変 数ラベルがコピーされます。しかし、<u>変数フォーマット</u> <u>はすべて削除されます</u>ので、ラベル付与 画面で 改め て 値ラベル として定義してください。

8.2 データ加工

データ加工 指定画面	X
データ加工	入力指定のリセット
対象データ … 表示 出力データ 表示 数値→文字変数に変換 … 最初の10.000件中の値の種類数上限 ✓ 文字→数値変数に変換 … 最初の1,000件中の最小有効件数割合% ✓ 変数作成・変換、条件抽出SASステートメント	sort_btn
✓ 「年成□−ド】	
、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	実行戻る
	^
	~

8.2.1 概要

入力したデータセットの変数タイプの変更(数値タ イプから文字タイプへ、またその逆)、分析に用いる 変数の選択、新変数の作成、条件抽出などのデータ 加工が行えます。

8.2.2 指定方法

この機能はマクロモジュールには含まれていません。 GUI実行モードでのみ指定可能です。

(必須指定)

対象データ 入力データセットを選択します。

出力データ ... 出力するデータセット名を入力します。入力 する対象データセット名と異なる名前を付ける 必要があります。

(任意指定)

数値→文字変数に変換

... 数値タイプから文字タイプに変換する変数 名のリストを選択または指定します。

最初の10,000件中の値の種類数上限

... 数値タイプから文字タイプに変換する変数 の選択条件を設定します。指定の値種類数以下 を持つ数値タイプ変数のみ選択されるように設 定します。デフォルトは50。

文字→数値変数に変換 ... 文字タイプから数値タイプに変換する変数 名のリストを選択または指定します。

最初の10,000件中の最小有効件数割合% ... 文字タイプから数値タイプに変換する変数 の選択条件を設定します。値を数値タイプに変 換しても有効な値となる割合%が指定の割合% 以上である文字変数のみリストボックスに表示 されるように設定します。デフォルトは50%。

変数作成・変換、条件抽出SASステートメント ... 変数作成・変換、条件抽出などの目的で、自 由にSASコードを記述できます。

Data Bring New Insight to Your Business 8 分析画面

8.2.3 生成コードの構造

この画面指定で生成されるSASコードの構造は、以下のとおりです。

(1) ファイル割り当て、オプション設定などの定型前 処理部分(libname,optionsステートメント)

(2) 数値→文字変換、文字→数値変換の指定が存在す る場合は、変数ラベル保存処理部分(data_null_ で 始まる DATAステップ)

(3) データ加工処理部分(data outdata.xxxxで始まる DATAステップ)

対象データ 50	np_data_cov 表示		
出力データ sa	np_data_csv2		
数値→文字変数	に変換 sei shokushu 最初の10,000件中の値の種類数上限	50	٠
文字→數值変数	に変換 … 最初の1,000件中の最小有効件数割合% !	50	٠
変数作成·変換,	条件抽出SASステートメント		
alse nenrei_kbn∹	"秦军"		
[生成コード]			
Ibname indata " Ibname outdata sptions nofmter Ibname library (r data _null_set in length _labelvar if vname(sei) no	21 WearWOMTKeamo,datakidatakiaamo,data,cav2"; (24 WearWOMTKeamo,datakidatakiaamo,data,cav2"; (utata), data,cav2(abar=1); data,cav2(abar=1); datakia,cav2(ab		
call symput("_la if vname(shoku	bel,0″, _labelvar); shu) ne vlabef,shokushu) then _labelvar≕vlabel(shokushu),else _labelvar≕";	,	-

[生成コード]で生成された**SAS**コードを確認しま す。

(1) ファイル割り当て、オプション設定などの定型前 処理部分

libname indata "C:¥Users¥DMT¥samp_data¥data¥samp_data_csv"; libname outdata
"C:¥Users¥DMT¥samp data¥data¥samp data csv2
".
,
options notmterr;
libname library (outdata);
(2) 数値→文字変換 文字→数値変換指定がある場合

(2) 数値→又子変換、又子→数値変換指足がめる場合 の変数ラベル保存処理部分

data _null_;set indata.samp_data_csv(obs=1); length _labelvar \$256; if vname(sei) ne vlabel(sei) then _labelvar=vlabel(sei);else _labelvar="; call symput("_label_0", _labelvar); if vname(shokushu) ne vlabel(shokushu) then _labelvar=vlabel(shokushu);else _labelvar="; call symput("_label_1", _labelvar); ;run;

(3) データ加工処理部分

data
outdata.samp_data_csv2(rename=(_dummy_0=sei
_dummy_1=shokushu));
set indata.samp_data_csv;
_dummy_0=left(put(sei,best12.));if_dummy_0='.'
then_dummy_0=";
_dummy_1=left(put(shokushu,best12.));if
_dummy_1='.' then_dummy_1=";

label _dummy_0="&_label_0"; label _dummy_1="&_label_1"; drop sei shokushu; if nenrei>=40 then nenrei_kbn="中高年"; else nenrei_kbn="若年"; run;

drop sei shokushu;と**run**;の間に、**変数作成・変換**, **条件抽出SASステートメント** に入力したテキスト がそのまま挿入されます。

(TIPS)以下の例はCARDS文で入力したデータを読み取り、分析ルートディレクトリのDATAライブラリの中に保存します。

(1) 入力データには存在するデータを適当に指定する。ここでは samp_data
(2) 出力データに、作成するデータセット名を入れる。ここでは samp2
(2) 変数作成・変換・条件抽出SASステートメント テキストボックスには以下のように入力する、
(2-1) 最初の行に、 stop;run; と入れる。
(2-2) 次に、data outdata.samp2; で始まるデータステップを入力する。このとき、ライブラリ名はoutdata で固定、作成するデータセット名は(1) の出力データ テキストボックスに入れた名前と同じにする。ここでは、 data outdata.samp2; に続いて、cards文でデータを読み取るプログラムを書いています。

[生成コード]

libname indata "C:¥Users¥DMT¥samp_data¥data¥samp_data "; libname outdata "C:¥Users¥DMT¥samp_data¥data¥samp2"; options nofmterr; libname library (outdata); data outdata.samp2; set indata.samp_data; stop;run; data outdata.samp2; input id \$ x1 x2; cards: 0112 0224 03 3 10 run;

8.3 ラベル付与

ラベル・フォーマット 指定画面	×
分析データに変数ラベルと値ラベルを定義	<u>'୬</u> ト
対象データ 表示	
○ ラベル定義ファイル (CSV形式) 表示 [編集
{変数名,変数ラベル,値,値ラベル}の順に、この4項目を並べたCSVファイル、または 変数ことに最初の行に{変数名,変数ラベル}、次の行から{値,値ラベル}を記載し、 変数間にプラング行を挿入したCSVファイルを指定してください	
○ SASプログラムファイル 表示	編集
LABELステートメントのみ、または FORMATプロシジャとFORMATステートメント、または LABELステートメントとFORMATブロシジャとFORMATステートメント を含むプログラムの入った SASプログラムファイルを指定してください、 それぞれ最後の指定を用いて変数ラベルと値ラベルを定義します	
○ 対象データから定義を除く □ 変数ラベル □ 値ラベル	
○ 新規定義作成(CSV形式) 名前 カテゴリ数上限 マ 新規定義下書きファイルをオープン	
変数ごとに最初の行に { 変数ろべル }、次の行から { 値, 値ラベル } を記載し、 変数間にブラング行を挿入した形式のCSVファイルを作成します. 分析ディレクトリの 下の SAMPLE フォルダ に保存されます.	
表示するデータ件数の上限 マ	₹3
	^
	~

8.3.1 概要

変数の意味や文字変数値の値の意味を分かりやすく 表示するためのラベルを定義します。本システムに おいては、変数につけるラベルを 変数ラベル、文字 変数の個々の値に1対1でつけるラベルを 値ラベル と呼んでいます。値ラベルは、文字変数の個々の値 ごとに定義されたフォーマット値のことです。

8.3.2 指定方法

この機能はマクロモジュールには含まれていません。 GUI実行モードでのみ指定可能です。

(必須指定)

対象データ

.... 入力データセットを選択します。

以下の(1),(2),(3),(4)のいずれかが必須指定です。

(1) ラベル定義ファイル (CSV形式)…… { 変数名, 変数ラベル, 値, 値ラベル } の順

に、この4項目を並べたCSVファイル,または 変数ごとに最初の行に { 変数名,変数ラベル }, 次の行から続けて { 値,値ラベル } を記載し、 変数間にブランク行を挿入したCSVファイルを 入力する場合に選択します。

以下の①、②のいずれかのパターンの**CSV**ファイル をあらかじめ作成しておき、作成した**CSV**ファイル をここで指定します。

 (1) { 変数名, 変数ラベル, 値, 値ラベル } の順に、4 項目を並べたCSVファイル

(例)

flg,応答,1, あり
flg,応答,0, なし
kinmusaki,勤務先形態,A,企業
kinmusaki,勤務先形態,B,自営(法人)
kinmusaki,勤務先形態,C,自営(個人)
kinmusaki,勤務先形態,D,官公庁
kinmusaki,勤務先形態,,不明

Data Bring New Insight to Your Business

gakureki,最終学歴,1,中学 gakureki,最終学歴,2,高校 gakureki,最終学歴,3,専門学校 gakureki,最終学歴,3,専門学校 gakureki,最終学歴,4,大学 gakureki,最終学歴,5,大学院 gakureki,最終学歴,不明 kazoku_kosei,家族構成,1,独身同居家族あり kazoku_kosei,家族構成,2,独身単身 kazoku_kosei,家族構成,3,既婚子供あり kazoku_kosei,家族構成,4,既婚子供なし kazoku_kosei,家族構成,5,独身子供あり kazoku_kosei,家族構成,不明 sei,性別,1,男性 sei,性別,2,女性 nenrei,年齡,,

なお、同じ変数名、変数ラベルが続く行については、 以下のように、重複する変数名、変数ラベルはヌル 値で入力されていてもかまいません。

(重複した変数名、変数ラベルをヌル指定した例)

flg,応答,1,あり ,,**0**,なし kinmusaki,勤務先形態,A,企業 "B,自営(法人) ,,C,自営(個人) ,,D,官公庁 ,,,不明 gakureki,最終学歴,1,中学 ,,2,高校 ,,**3**,専門学校 ,,4,大学 ,,5,大学院 ,,,不明 kazoku_kosei,家族構成,1,独身同居家族あり ,,2,独身単身 ,,3,既婚子供あり ,,4,既婚子供なし ,,5,独身子供あり ,,,不明 sei,性别,1,男性 ,,2,女性 nenrei,年齡,,

注意:

・数値タイプ変数には変数ラベルのみ指定可能です。 上記の変数 nenrei のように指定します。

・文字タイプ変数の欠損値に対する値ラベルは上記 の「不明」という値ラベルを定義しているように指 定します。

・文字タイプ変数には、変数ラベルのみ指定しても かまいませんし、一部の値に対して値ラベルを指定 してもかまいません。

・厳密な指定の有効性チェックは行っておりません。 対象データに存在しない変数が指定された場合は、 以下のようになります。

変数ラベル … 存在する変数については有効、存在 しない変数については無視されます。 値ラベル … 存在する変数については有効、存在し ない変数については無視されます。

・編集 ボタンを押すと、編集可能なメモ帳が開きま す。一部変更・削除・追加を行う場合に便利です。 ・結果がおかしい場合は、他の方法を試してくださ い。

②変数ごとに最初の行に { 変数名, 変数ラベル }, 次の行から続けて { 値, 値ラベル } を記載し、変数 間にブランク行を挿入したCSVファイル

(例)

注意:

・数値タイプ変数には変数ラベルのみ指定可能です。
 上記の変数 nenrei のように指定します。
 ・文字タイプ変数の欠損値に対する値ラベルは上記

の「不明」という値ラベルを定義しているように指定します。

・文字タイプ変数には、変数ラベルのみ指定しても かまいませんし、一部の値に対して値ラベルを指定 してもかまいません。

・空白行を1つの変数の指定の区切りとして認識します ので、必ず空白行を変数定義ごとに挿入してください。 逆に、1つの変数の指定の途中で空白行を挿入しない でください。

・厳密な指定の有効性チェックは行っておりません。 対象データに存在しない変数が指定された場合は、 以下のようになります。

変数ラベル … 存在する変数については有効、存在 しない変数については無視されます。 値ラベル … 存在する変数については有効、存在し ない変数については無視されます。

・編集ボタンを押すと、編集可能なメモ帳が開きます。一部変更・削除・追加を行う場合に便利です。
・結果がおかしい場合は、他の方法を試してください。

(2) SASプログラムファイル … LABELステートメントのみ,または FORMATプロシジャとFORMATステートメン ト,または、LABELステートメントとFORMAT プロシジャとFORMATステートメント を含む プログラムの入った SASプログラムファ イルを用いる場合に選択します。それぞれ最後 の指定を用いて変数ラベルと値ラベルを定義し ます。

SASプログラムコードを使って変数ラベル、値ラベ ルを定義します。

変数ラベル … LABELステートメントから定義され ます。複数の LABELステートメントが存在する場合 は、最後の LABELステートメントのみ用いられます。 LABELステートメントの中に、対象データに存在しな い変数の変数ラベル定義は指定しないでください。(エラ ーメッセージがログに出現します)

値ラベル … PROC FORMATステートメントから RUNステートメントまでの範囲とFORMATステート メントから定義されます。文字タイプフォーマット のみ利用されます。複数存在する場合は、最後の PROC FORMATステートメントからRUNステートメ ントまでの範囲、最後のFORMATステートメントの みが、それぞれ用いられます。FORMATステートメ ントに定義された変数の中に、対象データに存在しな い変数のフォーマット定義は指定しないでください。(エ ラーメッセージがログに出現します)

(例)

label flg='応答' kinmusaki='勤務先形態' gakureki='最 終学歴' sei='性別' nenreix='年齡';

proc format library=library;

value \$flgj '1'='あり' '0'='なし'; value \$kinmuj 'A'='企業' 'B'='自営(法人)' 'C'='自営(個 人)' 'D'='官公庁' other='不明';

value \$gakuj '1'='中学' '2'='高校' '3'='専門学校' '4'='大 学' '5'='大学院' other='不明';

value \$kazokuj '1'='独身同居家族あり' '2'='独身単身' '3'='既婚子供あり' '4'='既婚子供なし' '5'='独身子供あ り' other='不明';

value \$seij '1'='男性' '2'='女性' other='不明'; run;

format flg \$flgj. kinmusaki \$kinmuj. gakureki \$gakuj. kazoku_kosei \$kazokuj. sei \$seij.;

注意:

・数値タイプ変数には変数ラベルのみ指定可能です。 上記の変数 nenrei のように指定します。

・FORMATプロシジャは VALUEステートメントで元 の変数値に対する1対1のフォーマット値のみを指定 してください。(other=指定は使用しないでください) ・文字タイプ変数には、変数ラベルのみ指定しても かまいませんし、一部の値に対して値ラベルを指定 してもかまいません。

・厳密な指定の有効性チェックは行っておりません。 対象データに存在しない変数を指定するとエラーと なります。

・編集ボタンを押すと、編集可能なメモ帳が開きます。一部変更・削除・追加を行う場合に便利です。
・結果がおかしい場合は、他の方法を試してください。

(3) 対象データから定義を除く… 変数ラベル、値ラベルそれぞれの定義を削除したい場合に選択します。

これを選択し、実行すると、チェックボックスにチ ェックが入った変数ラベルと文字変数のフォーマッ ト定義はデータセットから削除されます。

なお、データに変数ラベルや値ラベルが定義された ままでも、多くの場合で、表示する時点で、ラベル 表示を行う/行わないを選択することができますの で、一度データにラベル定義や値ラベルを定義した ら、訂正を行いたい場合以外は削除する必要はあま りありません。

(4) 新規定義作成 (CSV形式)

… 新たに変数ラベル、値ラベルを定義したい場 合に選択します。入力対象データに定義されて いる変数ラベル、値ラベルを初期値として、変 数ラベル、値ラベルを編集する画面が開きます。

対象データの任意の項目に変数ラベル、値ラベルを 定義したい場合に選択します。

名前 を入力し、新規定義下書きファイルをオープンを 押すと、変数については、対象データの全変数の

Data Mine Tech Ltd. Data Bring New Insight to Your Business 8 分析画	面 ①データ抽出 8.3 ラベル付与
{ 変数名, 変数ラベル } が表示されます。カテゴリ上限以下の値の種類数を持つ文字タイプ変数については、続いて { 値, 値ラベル } が存在する値の数だけ表示され、変数の区切りとしてブランク行が1行追加されます。この内容を編集したCSVファイルは名前に保存されます。 こうして作成したCSVファイルは(1) ラベル定義ファイル(CSV形式) ラジオボタンの入力として用いることができ、編集した内容で対象データに変数ラベル、値ラベルを定義できます。	 中学 高校 専門学校 大学 大学院 不明 kazoku_kosei, 家族構成 独身同居家族あり 独身単身 既婚子供あり 既婚子供なし
flg, flg O, O 1, 1	5, 独身子供あり , 不明 sei, 性別
kinmusaki, kinmusaki A, A B, B C, C D, D	1, 男性 2, 女性 nenrei, 年齡
, gakureki, gakureki 1, 1 2, 2 3, 3 4, 4 5, 5 ,	 編集画面を閉じると、ファイルの内容は更新されます。 注意 ・慣れないうちは、新規の名前を指定するようにしてください。既に存在するCSVファイルを開くと、内容が対象データに定義された変数ラベル、文字変数のフォーマット値を参照したうベル定義CSVファイ した初期化 されます、復元できませんので、既在フ
kazoku_kosel, kazoku_kosel 1, 1 2, 2 3, 3 4, 4 5, 5	 バーマンには注意してください。 ・既存CSVラベル定義ファイルを開く場合も、改めてその時点でデータセットに定義済みの全変数の [変数名,変数ラベル]、カテゴリ上限以下の値の種類数を持つ文字タイプ変数の {値,値ラベル } が表
sei, 性別 1, 男性 2, 女性 nenrei, 年齢	示されます。(編集後、この定義をテータにつけない まま、再編集しようとすると、編集した作業結果が すべて元に戻り、無駄になります。) 一旦作成した ラベル定義CSVファイルの再編集は、必ず、(1) ラ ベル定義ファイル(CSV形式)を選択し、編集したラベ ル定義CSVファイルを選択し実行 し、データに変数
(編集後の例)	 ラベル、値ラベルを付けてから行ってください。また、改めて再編集を行うより、微調整で済む場合は、 (1) ラベル定義ファイル(CSV形式)を選択し、編集ボ
flg, 応答有無 0, なし 1, あり	タンを押して行ってください。 ・対象データの全変数が表示されます。変数の数が 多い場合は編集画面が表示されるまで時間がかかる 場合があります。データ加工 画面で分析に用いない
kinmusaki, 勤務先 A, 企業	ことが明らかな変数はあらかじめ削除しておくと効率的です。

・既に定義されている変数ラベル、値ラベルがあれ ば、それが表示されます。既存定義の無い場合の変 数ラベルは変数名、値ラベルは値がデフォルト表示 されますので、ラベルを必要に応じて編集してくだ さい。

・値ラベルは カテゴリ上限 以下の値の種類数を持つ

B, 自営(法人)

C, 自営(個人)

gakureki, 学歴

D, 官公庁

,不明

Data Bring New Insight to Your Business 8 分析画面 ①データ抽出 1.1

文字タイプ変数のみ表示されます。

(4)を選択した場合、以下は必須です。

名前

… 新規定義作成で編集保存する変数ラベル・値 ラベル定義CSVファイルに名前を付けます。な お、このファイルは分析ルートディレクトリの 下のSAMPLEディレクトリに保存されます。既 存の名前を指定すると、注意メッセージが出現 しますが、上書き保存は可能です。

(任意指定)

- カテゴリ数上限 コンボボックス
 - … 文字タイプ変数の { 変数名, 変数ラベル } の行に続いて { 値, 値ラベル } の行を表示す る値の種類数 (カテゴリ数)の上限を指定しま

す。たとえば、10 とすると、値の種類数が10 を超える文字タイプ変数は { 変数名, 変数ラ ベル } のみ表示され、 { 値, 値ラベル } は 表示されません。

なお、値の種類数には欠損(ブランク)を含み ます。

(TIPS) カテゴリ数上限 について:

50近いカテゴリ数を持つ都道府県コードなど、値ラ ベルを付与した方が良いと思われるカテゴリカル変 数の最大カテゴリ数を考慮して設定します。カテゴリ 数上限の設定は、比較的大きめの値を設定しておく ことをお勧めします。

8.4 検証確保(dmt_datasamp)

DMT_DATASAMP 指定画面 X
モデル作成用データと検証データの作成 スカ指定のリセット
入力データ (*data=) 表示 where条件 マ
層別変数 (y=) ターゲット値 (target=) サンプルデーク抽出座(samprate=) 0.5
出力サンプルデータ (outsamp=) 出力検証データ (outsate) 表示
[生成]ード]

8.4.1 概要

DMT_DATASAMPマクロを呼び出し、分析データセットからオブザベーションをランダム抽出します。

主な用途は次の2つです。

- (1) モデル作成用データセットとモデル検証用 データセットの作成
- (2) データセットから任意の抽出率の単純サン プリングまたは層別サンプリング

(1) モデル作成用データセットとモデル検証用デー タセットの作成

モデル作成データへのモデルの過剰適合がお気てい るかどうかを確認する目的で、分析に用いることが できるデータセットから、分類木の場合はターゲッ ト別の層別サンプリングの方法、回帰木の場合は単 純サンプリングの方法で、オブザベーションをラン ダム抽出し、モデル作成用データでモデルを作成し、 その精度をモデル検証用データで確認するモデル作 成方法が一般的に採用されています。

DMT_DATASAMPでは層別変数とターゲット値をそ れぞれターゲット変数(y=パラメータ)およびター ゲット(target=パラメータ)で指定することにより、 ターゲット/非ターゲット別に抽出率(samprate=パ ラメータ)に応じた件数割合でそれぞれランダム抽 出を行い、同じ抽出率の方のターゲット/非ターゲ ットをそれぞれ集めて分類木モデル作成用データと モデル検証用データを作成する機能を持っています。

(2) データセットから任意の抽出率の単純サンプリ ングまたは層別サンプリング

ターゲット変数(y=パラメータ)の指定を行わない 場合は、抽出率(samprate=パラメータ)に応じた単 純サンプリングを行います。サンプリング結果は抽 出率で指定した割合の方をサンプル(outsamp=パラ メータで名前をつけたデータセット)、残りをテスト (outtest=パラメータで名前をつけたデータセット)

Data Bring New Insight to Your Business

8 分析画面 ①データ抽出 1.1

に出力します。

ターゲット変数(y=パラメータ)の指定を行った場 合は、ターゲット変数の値別に抽出率(samprate=パ ラメータ)に応じた層別サンプリングを行います。 サンプリング結果は抽出率で指定した割合の方をサ ンプル(outsamp=パラメータで名前をつけたデータ セット)、残りをテスト(outtest=パラメータで名前 をつけたデータセット)に出力します。なお、許容 するターゲット変数の値の種類はデフォルトで最大 100までとしていますが、maxgrp=パラメータで変更 可能です。

ターゲット変数(y=パラメータ)およびターゲット (target=パラメータ)の指定を行った場合は、ター ゲット値とそれ以外のすべての値を非ターゲットと した2つのカテゴリ別に抽出率(samprate=パラメー タ)に応じた層別サンプリングを行います。サンプ リング結果は抽出率で指定した割合の方をサンプル (outsamp=パラメータで名前をつけたデータセッ ト)、残りをテスト(outtest=パラメータで名前をつ けたデータセット)に出力します。

8.4.2 指定方法

(コマンド実行モードでの指定)

%dmt_datasamp(help,data=,outsamp=_sampdata ,outtest=_testdata,samprate=0.66667,testrate=,y=,ta rget=,maxgrp=STURGES ,seed=1,language=JAPANESE)

(GUI実行モードでの変更点)

- help, testrate=パラメータは使用不可。
- ・samprate=パラメータのデフォルトは 0.5
- ・outsamp=パラメータのデフォルトは SAMP_&data
- outtest=パラメータのデフォルトは TEST_&data
 (&data はdata=パラメータの値です。)
- ・maxgrp=, seed=はオプション画面で指定します。

(必須パラメータ)

以下の1個のパラメータは省略できません。

入力データ(data=) … 入力データセット名の指定. 入力データセット名の後にwhere=データセッ トオプションを指定できます。

(単純サンプリングの場合のパラメータ)

以下の4個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

サンプル抽出率の指定 (samprate=0.66667) テストデータ抽出率の指定 (testrate=) ... (コマンド実行モードのみ有効)

出カサンプルデータ名の指定 (outsamp=_sampdata) … モデル作成用データセット名の指定 出力検証データの指定 (outtest=_testdata)

- … 出力する残りのモデル検証用データセット 名を指定.
- 乱数シード値の指定 (seed=1)… (正の整数を与える)

注意: samprate=, testrate=パラメータはいずれか1 つのみを指定します。

(層別サンプリングの場合のパラメータ)

以下のパラメータは層別サンプリングを行う場合の 必須指定です。次の target=パラメータを同時指定し ない場合は、ターゲット変数のすべての値別に層別 サンプリングを行う指定となります。

層別変数の指定 (y=) … ターゲット変数名を指定.(単一変数名のみ 指定可)

以下のパラメータは任意指定です。target=パラメー タの指定があればターゲットとターゲット以外のす べての値の2つのグループ別の層別サンプリング指 定となります。

- ターゲット値の指定 (target=) … (単一値のみ指定可、ただし数値タイプの場 合のみ、あるしきい値以上または以下または超 または未満を指定可)
- 許容最大層別数の指定 (maxgrp=100) … 層別数がデフォルトより大きい場合は、値を 増やしてください。

その他、単純サンプリングの場合に記載した4個のパ ラメータが任意指定です。

(その他のパラメータ)

- help … パラメータ指定方法をログ画面に表示します。 このオプションは単独で用います。(このパラメ ータはコマンド実行モードでのみ有効) 例:%dmt_datasamp(help)
- **言語(language=JAPANESE)** … 言語の選択他に ENGLISH が指定可能

8.4.3 パラメータの詳細

入力データ (data=) 例:data=a, data=a(where=(DM="1"))

層別変数 (y=) 層別サンプリングを行う場合は必須指定です。

target=パラメータを一緒に指定しない場合は、y=パ ラメータに指定した変数の値別にsamprate=パラメ ータで指定した共通の抽出率で各層のランダムサン プリングを行い、outsamp=データセットにまとめて 出力されます。(残りはouttest=データセットに出力 されます。) y=パラメータに指定する変数は 2以上 maxgrp=パラメータの値以下の値の種類数を持つ必 要があります。

例:y=flag

(TIPS) 層別変数は1個のみ指定可能です。性別かつ年 齢階層別といった2重層別を行いたい場合は、2つの 変数の値の組合せを値に持つ変数(クロス変数)を 作成し、それをy=パラメータに指定します。

ターゲット値 (target=)

y=パラメータと同時にターゲット値を指定します。 指定します。ターゲット値と非ターゲット値の2つの グループ別の層別サンプリングを行います。

ターゲット変数が文字タイプの場合は1種類の値を 指定します。特殊な文字(+,-など)を含まない限り 引用符で囲む必要はありません。ターゲット変数が 数値タイプの場合は1種類の値、もしくはあるしきい 値を境とした「以上」、「以下」、「超」、「未満」のい ずれかの範囲を指定可能です。数値変数タイプで範 囲を指定する場合は引用符で囲んではいけません。

(ターゲット変数が文字タ 例1:y=flag,target=A イプ変数で、その値"A"をターゲットに指定する場合) 例2: y=sales,target=1000 (ターゲット変数が数 値タイプで、その値1000をターゲットに指定する場 合) (ターゲット変数が 例3:y=sales,target=>1000 数値タイプで、その値1000超をターゲットに指定す る場合) 例4:y=sales,target=>=1000 (ターゲット変数が 数値タイプで、その値1000以上をターゲットに指定 する場合。 target==>1000と指定してもかまいませ \mathcal{N}_{\circ}) 例5:y=sales,target=<1000 (ターゲット変数が 数値タイプで、その値1000未満をターゲットに指定 する場合) 例6:y=sales,target=<=1000 (ターゲット変数が 数値タイプで、その値1000以下をターゲットに指定 する場合。 target==<1000と指定してもかまいませ \mathcal{N}_{\circ})

注:文字タイプ変数のターゲット値は、大文字、小 文字が区別される点に注意してください。(変数名は 大文字・小文字の区別はありません。)

乱数シード値 (seed=1)

正の整数値を指定すると、同じシード値に対して常 に同じコンピュータ乱数系列が生成されます。一方、 値0を指定すると、生成されるコンピュータ乱数系列 は実行するたびに異なるものとなります。分析結果 の再現性を求める場合は、シード値は**0**以外に指定し てください。

許容最大層別数 (maxgrp=100) 非常にたくさんのカテゴリを持つ層別変数を誤って 指定した場合に実行を行わないようにするためのオ プションです。指定の値を超える場合はエラーとし て分析を中断します。問題がない場合は、値を大き くして再実行してください。

8.4.4 データセット出力

ランダム抽出されたオブザベーションが outsamp= パラメータとouttest=パラメータに指定されたデー タセットに出力されます。

8.4.5 欠損値の取り扱い

y=層別変数に文字タイプ、数値タイプいずれの変数 を指定した場合も、欠損値は有効な値の1つとみなさ れます。

数値タイプのターゲット変数の欠損値(.)は、特殊欠損 値(._,.A~.Z)と区別して他の数値と同様に取り扱われ ます。

8.4.6 制限

入力データセットに以下の変数が存在する場合、警告を出して処理を中止します。入力データセットから削除しておくか、変数名を変えてください。

_remain_n _got_n _target_n _random _chkrand _seed _targflg _obsno

8.4.7 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。 Data Bring New Insight to Your Business 8 分析画面 ①データ抽出 1.1

e_name e_type lab&i nobs spc&i typ&i zketa _speclen _specnum _errormsg

8.5 データ管理

データロード 指定画面										
	デー	の管理								
名前作	成日時	۶t								
treescore 2016/07 TEST DATA 2016/07 SAMP_DATA 2016/07	/27 14:47 [TRE /26 13:22 [RE /26 11:53 [RE/	SCORE] %dmt_treescore(data=data_TEST_DATA,model=mod IDATA] libname in "C:¥Users¥DMT¥samp_data¥sample";de IDATA] libname in "C:¥Users¥DMT¥samp_data¥sample";de	del, tree,outscore≃out} ata data.TEST_DATA; ata data.SAMP_DATA;							
	<		>							
	表示	名前の変更削除	戻る .::							
8.5.1 概要 「データ読込」、「データ加工」、「検証確保」、「予測付与」 画面で作成した「分析ディレクトリ」の下の「データセット ディレクトリ」に保存されているデータセットを操作 (表示・名前の変更・削除)します。 この機能はマクロモジュールには含まれていません。 GUII実行モードでのみ指定可能です										
メモ欄の最初の鍵カッコは以下の ことを表します。)画面で作成され	た 名前の変更 データの名前とメモ内: す。	容を確認・変更しま							
[READDATA] データ読込 [CONVDATA] データ加工 [SAMPDATA]と[TESTDATA] 枚 [TREESCORE] 予測付与	食証確保	データリネーム 指定 データの名前変 ^{名前} Itreescore 22	画面 × 5更 ^{1時} 016/07/27 14:47							
続いてアータを作成したときにす が記述されています。	そ行したフロク	ム 地球での加速メモを書きためていたとい 「TREESCORE」総体的 treescore (data=data TEST_DATA,model=model_tree.outsc ore.pred=_CONF.outcode=O>#Users#DMT¥samp_	core=outscore_treesc data¥scorecode							
8.5.2 操作方法 名前 (作成日時) を書かれたバーをクリックすると ストをその項目の昇順・または留 とができます。 操作したいデータセット名をクリ と、操作ボタンが表示されますの	:、データセッ &順で並べ替え リックして選択・ つで、表示・名言	変更 月 名前は本システムが自動で付与 保での SAMP_と TEST_)を リ で32-5=27文字以内に設定してく (先頭はアルファベットまたは」なお、名前の変更は、元の名前 項目(モデル作成画面の入力パ) 1<11	 戻る する接頭辞(検証確 :考慮して半角英数字 ください。 _(アンダーバー)) を参照している他の ラメータ値など)と 、再指定が必要にな							
変更・削除の操作を行います。素→ データの内容を表示しま	す。	<u>い</u> なこの 影響かのります。								

Data Bring New Insight to Your Business 1 9.1 クロス分析 (dmt_cross)

	確認
?	保存データ_treescore を削除してよろしいですか?
	はい(Y) いいえ(N)

合は、「設定画面」の「分析ディレクトリ」の下の「データセ ットディレクトリ」「表示」 ボタンを押し、起動する Windowsエクスプローラで行うと便利です。削除し たいデータセット名が書かれたディレクトリをすべ

て同時選択してから削除します。

削除すると、元に戻せません。

(TIPS) 多数のデータセットをまとめて削除したい場

9. 分析画面 ②項目分析

モデル作成を行う前に、分析する各項目の分布とモデルの目的変数との関連を調べます。

9.1 クロス分析(dmt_cross)

DMT_CROSS 指定画面	×
クロス分析	
入力データ (*data=) 表示 where条件	
対照データ (control=) 表示 where条件	···· ·· ··· ··· ··· ··· ··· ··· ··· ··
ターゲット変数 (*y=) ターゲット値 (target=)	
i況叩(*x=)	sort btn
除外する説明変数	
(dropx=)	
クロスレベル (crossivl=) 1 0 1 2 クロスレベル2のAIC値基準 (crossaic=)	
出力クロス来計テータ (outcross=/	
V]
表示するデータ件数の上限	実行 ツリーモデル 前回 戻る
	~
	× .

9.1.1 概要

クロス分析 (DMT_CROSS) はモデル作成の事前分析 に用いるためのツールです。主な用途は次の3つです。

- (1) 説明変数の選択とツリーモデル作成画面との連携
- (2) 説明変数の分布の確認
- (3) ターゲット変数の分布の確認

(1) 説明変数の選択とツリーモデル作成画面との連携

多数の説明変数候補が存在するような場合、その中 からあらかじめターゲット分布との関連性が一定以 上認められる説明変数のみを選択して、モデル作成 に進むと分析効率が良くなります。DMT_CROSS を 実行すると、説明変数をAIC値という汎用的な統計的 基準により一律に評価し、評価値に従って説明変数 の説明力に序列がつけられます。そして、統計的有 意性が認められる説明変数のみをツリーモデル作成 画面の指定へ引き継ぐことができます。

(2) 説明変数の分布の確認 数値タイプ説明変数については、可能な限り件数が 等しくなるように事前に自動カテゴライズを行い、 カテゴリごとの数値の範囲が表示されます。このと き、欠損値は欠損値だけのカテゴリが生成されます。 分析結果から、外れ値や異常値、また欠損値の割合 などをチェックすることが可能です。

文字タイプ説明変数については、各カテゴリの該当 件数をそのまま表示していますので、件数が異常に 少ない、または多いカテゴリが無いかどうか、カテ ゴリバランスに違和感が無いかどうか、また存在す るはずの無いカテゴリが入っていないかどうか、と いったチェックが可能です。

(3) ターゲット変数の分布の確認 任意の説明変数のカテゴリ別に、ターゲット/非タ ーゲットの出現件数と出現率、もしくは数値タイプ ターゲット変数の平均値、標準偏差、最小値、最大 値の集計結果をレポートします。例えば、明細デー タから顧客数や金額(顧客単価)を店舗別、日別、 などで集計を行い、グラフ表示することも DMT_CROSSとDMT_CROSSPLOTを用いて行うこ とができます。

9.1.2 指定方法

(コマンド実行モードでの指定)

%dmt_cross(help,data=,control: ,x=,dropx=&y,outcross=_cross,outfmt=_fmt ,outaic=_aic,oaicall=_aicall ,lastcatm=N,nomergen=STURGES ,crossaic=,title=,crosslvl=1,print=,labeldat=&data ,maxcatn=1000,itmunit1=100,itmunit2=10 ,order=,pctf=7.2,meanf=best8.,aicf=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,language=JAPANESE,std_mod_min_n=9 ,outhtml=dmt_crosstab.html,outpath=)

(GUI実行モードでの変更点)

help, outhtml=, outpath=パラメータは指定不可。
(outhtml=, outpath=指定は自動で行われます。)
常に print=N(ただし、実行終了後に分析結果表の表示が可能です)

・lastcatm=, nomergen=, maxcatn=はオプション画面

で指定します。

(必須パラメータ)

以下の5個のパラメータの内、data=, y=, x= の3個は 常に必須指定です。control=パラメータは、施策実施 効果をAIC評価する場合に対照群データの指定に用 います。また、target=パラメータは、ターゲット値 の出現率に関するAIC計算を行う場合に指定しなけ ればなりません。

入力データセットの指定 (data=)

- 入力対照データの指定 (control=)
- ターゲット変数名の指定 (y=)
- (単一変数名のみ指定可)
- 説明変数リストの指定 (x=)
 -(例: a b c x1-x4 a--z f_:)
- ターゲット値の指定 (target=) ……(ターゲット/非ターゲットの度数分割表に おけるAIC計算を行う場合にのみ必須)

(オプションパラメータ)

以下の27個のパラメータは任意指定です。(=の右辺 の値はデフォルト値を表しています)

help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効) クロス出力データセット名の指定 (outcross= cross) ... DMT_CROSSTAB, DMT_CROSSPLOTで用 いる。 AIC値出力データセット名の指定 (outaic=_aic) 全変数のAIC値出力データセット名の指定 (oaicall=_aicall) 説明変数間のクロスレベルの指定 (crosslvl=1) (1 または 2) 最終カテゴリ併合指定 (lastcatm=N) ... 数値説明変数カテゴライズにおいて、最後の カテゴラリ件数が少ない場合1つ前のカテゴリ に併合するか否かの選択(Y/N). 非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES) ... 指定の値を超える値の種類数(欠損を除く) を持つ数値説明変数はカテゴライズしてから 分析に用いる.(デフォルトはスタージェスの式 の値) x=説明変数リストから除外する変数リストの指定 (dropx=&v)クロスレベル2のAIC値基準 (crossaic=) …2変数のクロス変数のAIC計算結果において表 示する最大AIC値の指定.(ブランク、または最大 AIC値のいずれか) 分析結果表の表示出力を行うか否かの選択 (print=) ... 画面に結果を表示するか否かの選択(Y/N).明 示的な指定が無い場合は分析する説明変数の数

が99以下の場合はY,100以上の場合はNに自動

設定.(コマンド実行モードでのみ有効.GUI実行

Data Bring New Insight to Your Business 9 分析画面 ②項目分

モードでは常に<mark>N</mark>)

分析結果のカテゴリ表示順序の指定 (order=) … クロス分析結果表における説明変数値の並 び順を指定します. (order= /A/D) 値の昇順(ブラ ンク), ターゲット出現率または平均値の昇順 (A), ターゲット出現率または平均値の降順(D) (コマンド実行モードでのみ有効. GUI実行モ ードでは常にブランク)

変数ラベルと値ラベルを使用 (labeldat=&data) … 説明変数のラベルとフォーマットを指定の データセットのディスクリプタ部を参照して使 用. (コマンド実行モードでのみ変更可能. GUI 実行モードでは常にデフォルト値 &data に設 定)

分析に用いる文字タイプ説明変数の最大カテゴリ数 (maxcatn=1000)

… 分析に用いる文字タイプ説明変数の最大カ テゴリ数の指定

全体の標準偏差を用いる最小カテゴリ件数の指定 (std_mod_min_n=9)

(コマンド実行モードでのみ有効)

itmunit1=100
 … 1個の表に出力する説明変数の個数単位の指
 定. (コマンド実行モードでのみ有効)

itmunit2=10 … クロスレベル=2の表を出力するとき、1個の 表に出力する

説明変数1の個数単位の指定.

(コマンド実行モードでのみ有効)

集計フォーマット定義データセットの出力先の指定 (outfmt=_fmt)

… DMT_CROSSTAB, DMT_CROSSPLOTで用 いる. (コマンド実行モードでのみ有効. GUI実

行モードでは自動保存)

画面出力のタイトルの指定 (title=) …… %str,%nrstr,%bquote などの関数で囲んで

指定する(コマンド実行モードでのみ有効)

百分率の表示フォーマットの指定 (pctf=7.2) 平均値・標準偏差の表示フォーマットの指定

(meanf=best8.)

AIC値の表示フォーマットの指定 (aicf=best8.)

差分AIC分析結果表における処理群(DATA)を表す 号 (d_label=[D])

差分AIC分析結果表における対照群(Control)を表す記 号 (c_label=[C]) 差分AIC分析結果表における処理群-対照群間の差を

表す記号(dif_label=[D]-[C])

言語の選択 (language=JAPANESE)

HTML出力ファイル名 (outhtml=dmt_crosstab.html) (コマンド実行モードでのみ有効)

HTMLファイル出力ディレクトリの指定 (outpath=) (コマ ンド実行モードでのみ有効)

9.1.3 パラメータの詳細

入力データ (data=) このパラメータは省略できません。control=の指定が ある場合は、処理群を表す入力データセットを指定 します。

例:data=a, data=a(where=(DM="1"))

入力対照データ (control=)

処理群と対照群間の応答差を分析するときに、対照 群を表す入力データセットを指定します。 例: control=b, contol=a(where=(DM="0"))

ターゲット変数 (y=)

ターゲット変数名を指定します。 このパラメータは 省略できません。 例:y=flag, y=sales_amount

ターゲット値 (target=)

ターゲット値を指定します。このパラメータは文字 タイプターゲット変数の特定の値、もしくは数値タ イプターゲット変数の特定の値もしくは範囲をター ゲット値とみなして、その出現率(または実施群と 非実施群間の出現率の差)を分析したい場合は省略 できません。(数値タイプターゲット変数の値そのも のの分布の違いを分析したい場合は指定してはいけ ません。)

ターゲット変数が文字タイプの場合は1種類の値を 指定します。特殊な文字(+,-など)を含まない限り 引用符で囲む必要はありません。ターゲット変数が 数値タイプの場合は1種類の値、もしくはあるしきい 値を境とした「以上」、「以下」、「超」、「未満」のい ずれかの範囲を指定可能です。数値変数タイプで範 囲を指定する場合は引用符で囲んではいけません。

 例1: y=flag,target=A (ターゲット変数が文字タ イプ変数で、その値"A"をターゲットに指定する場合)
 例2: y=sales,target=1000 (ターゲット変数が数 値タイプで、その値1000をターゲットに指定する場 合)
 例3: y=sales,target=>1000 (ターゲット変数が 数値タイプで、その値1000超をターゲットに指定す

る場合) 例4: y=sales,target=>=1000 (ターゲット変数が 数値タイプで、その値1000以上をターゲットに指定 する場合。 target==>1000と指定してもかまいませ

ん。) 例5: y=sales,target=<1000 (ターゲット変数が 数値タイプで、その値1000未満をターゲットに指定 する場合)

 例6: y=sales,target=<=1000 (ターゲット変数が 数値タイプで、その値1000以下をターゲットに指定 する場合。 target==<1000と指定してもかまいません。)

注:文字タイプ変数のターゲット値は、大文字、小 文字が区別される点に注意してください。(変数名は 大文字・小文字の区別はありません。)

```
説明変数 (x=)
```

説明変数を指定します。このパラメータは省略でき ません。間に1個以上のスペースを入れて、複数の説 明変数を指定可能です。また、3通りの省略指定(-,--,:) と3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) も利用可 能です。

例1:x=age (説明変数1個を指定)
例2:x=age seibetsu (説明変数2個を指定)
例3:x=abc1-abc100 (変数名がabcで始まり1から 100までの数字で終わる100個の説明変数を指定)
例4:data=a,x=nenrei--jukyo (入力データセットa に含まれる変数を定義された変数順で検索して、 nenreiからjukyoの範囲に含まれる全変数を説明変数 に指定)
例5:data=a,x=abc: (入力データセットaに含まれ

例5: data=a,x=abc: (人力テータセットaに含まれ るabcで始まる全説明変数を指定)

例6:x=age x1-x5 q: time--yz1 nenshu (説明変数 指定方法の複合例)

例7; x=_all_ (全変数)

例8; x=_character_ age (全文字タイプ変数とage)

除外する説明変数 (dropx=&y)

x=パラメータと組み合わせて用い、**x=**パラメータに 指定した説明変数の中で分析から除外する説明変数 を指定します。

デフォルトは dropx=&y すなはち、ターゲット変数 が除外されます。なお、dropx=パラメータに何か指 定すると、常にターゲット変数も除外変数に加わり ます。x=パラメータにターゲット変数を指定し、 dropx=,と明示的にブランク指定を行った場合のみ

ターゲット変数は除外されずに分析に加わることに なります。

x=パラメータと同じ指定方法が使えます。

例:

x=_all_,dropx=a_: (**a**_で始まる変数およびター ゲット変数以外の**data=**入力データセットの全変数 を説明変数に指定)

クロスレベル (crosslvl=1)

説明変数間のクロスをとった説明変数を作成してタ ーゲットとの関連性を分析するか否かを指定します。 CROSSLVL=1 (デフォルト)の場合は説明変数同士 の組み合わせは分析しません。すべての説明変数に ついてターゲットとの関連性を別々に分析します。 CROSSLVL=2を指定すると、CROSSLVL=1の分析に 加えて、全説明変数から2つの説明変数を取り出す全 組み合わせについて説明変数間のクロス説明変数を 作成し、ターゲット変数との関連性を分析し、以下 の要件を満たすクロス説明変数について結果を報告 します。

(1) crossaic=パラメータに値を指定しなかった場合(デ フォルト)

クロス説明変数とターゲット変数とのAIC値を

Cross_AIC、クロス説明変数を構成する元の2つの説 明変数とターゲット変数とのAIC値をそれぞれ Subset_AIC1, Subset_AIC2とすると、以下の4個の いずれかのケースに合致するCross_AICを持つクロ ス説明変数についてのみ結果を表示します。

ケ ー ス	Cross_AIC	Subset _AIC1	Subset _AIC2
1	負	非負	非負
2	Subset_AIC2 未満	非負	負
3	Subset_AIC1 未満	負	非負
4	(Subset_AIC1+Subset_A IC2)未満	負	負

ケース1は元の2変数ともに単独ではターゲットと 関連がないと認められるのにクロスを取った変数と は関連が認められる場合です。ケース2とケース3 は単独では一方の変数がターゲットと関連があるが もう一方は関連が無い場合で、組み合わせると関連 性が高くなるケースです。ケース4は元の2変数が共 に単独でターゲットと関連があるが、組み合わせた 場合の相乗効果が高いと認められるケースです。

(2) crossaic=パラメータに値を指定した場合

crossaic=パラメータに指定した値以下のAIC値を持 つクロス説明変数の結果を出力します。 例: crossIVI=2,crossaic=-100 (ターゲット変数 との分割表のAIC値が-100以下のクロス説明変数の み表示します。)

クロスレベル2のAIC値基準 (crossaic=)

説明変数間のクロスをとった説明変数(クロス説明 変数)の分析結果表示を制御します。(crosslvl=パラ メータの説明を参照)デフォルトはブランク(指定 なし)です。

出カクロス集計データ (outcross=_cross)

分析集計結果をデータセットに出力します。指定が 無くても_cross という名前でWORKライブラリに 出力されます。このデータセットは DMT_CROSSTAB, DMT_CROSSPLOTの入力に用 います。

出力AIC統計量データ (outaic=_aic)

説明変数ごとのAIC値をデータセットに出力します。 指定が無くても _aic という名前でWORKライブラ リに出力されます。

出力全AIC統計量データ (oaicall=_aicall)

crosslvl=2を指定した場合、分析する説明変数の2つ の全組合せを含むAIC値をデータセットに出力する よう指定します。 指定が無くても _aicall という名 前でWORKライブラリに出力されます。crossslvl=1

の場合はoutaic=出力データセットと全く同じ内容に なります。

非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES)

個々の数値タイプ説明変数のカテゴライス方法に関 して、欠損値を除いた値の種類数がこの値以下の場 合、その数値説明変数は個々の値をカテゴリとみな すように指定します。デフォルトはスタージェスの 公式により計算された値です。

CEIL(1+log2(N))

ただし、CEILは整数値への切り上げ関数、log2は2を 底とする対数関数、Nは欠損値を除くデータ件数を表 します。

分析に用いる文字タイプ説明変数の最大カテゴリ数 (maxcatn=1000)

この指定は文字タイプ変数が単なるオブザベーション識別変数であって分析対象では無いとみなすためのパラメータです。デフォルトは1000です。文字タイプ説明変数のカテゴリ数が指定の数を超える場合、その文字タイプ説明変数は分析対象から除外されます。

最終カテゴリ併合 (lastcatm=N)

数値タイプ説明変数のカテゴライズ方法に関して、 最後のカテゴリを最後から2番目のカテゴリに併合 するか否かを指定します。デフォルトはN(併合しな い)です。

「ノード分割アルゴリズム」の「(1)数値説明変数 のカテゴライズ」に記載したように、一般にタイが 存在する数値変数(たとえば年齢)の場合、カテゴ ライズ結果は最後にカテゴリのみ他のカテゴリより 件数がかなり少なくなる可能性があります。そのた め最後のカテゴリを1つ前のカテゴリと併合する方 がモデルの安定性が高まる場合があります。

9.1.4 クロスレベル2の既定の数値変数のカテゴライズ

クロスレベル1の数値変数の既定のカテゴライズ方 法は、以下のスタージェスの式によってカテゴリ数 を決定しています。

階級数=ceil(1+log2(N))

しかし、クロスレベル2においては、クロス変数のカ テゴリ数が多くならないようにするため、各数値変 数の既定のカテゴリ数を、以下のようにスタージェ スの式の値の平方根をとった値とし、その組合せに よってクロス変数のカテゴリが生成されるようにし ています。

クロスレベル2の個々の数値変数の階級数 =ceil(sqrt(ceil(1+log2(N))))

この仕組みを無効にするには、nomergen=パラメー

タに数値変数のカテゴリ数を定数で指定してください。

9.1.5 ツリーモデルとの連携機能

GUI実行モードでは、クロス分析実行後 深識 を 押すと、クロス分析で指定した入力データ、ターゲ ット変数、ターゲット値、説明変数などのパラメー タを引き継ぎますが、説明力が無いと判断された説 明変数は除外する指定(dropx=パラメータに追加指 定)を行ったツリーモデル作成画面に移行します。

コマンド実行モードでは、目的変数と関連があると 判定された説明変数項目をグローバルマクロ変数 &_XSEL、関連が無いと判定された説明変数項目を &_XDEL にそれぞれ出力します。これらは同じSAS またはWPSセッション内で、続いてツリーモデルを 作成するとき説明変数指定を容易にするために用い ることができます。

なお、いずれのモードでも、クロスレベル=2を指定 した場合は、クロスレベル=2で有意(AIC<0)となっ たクロス変数を構成する説明変数も説明力があると 判断されます。

例:

/* (1-1)説明変数ごとの関連分析 */ %dmt_cross(data=samp_data,y=flg,target=1, x=sei nenrei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu nenshu DM)

/*(1-2)ツリー分析 */

%dmt_tree(data=samp_data,y=flg,target=1, x=&_XSEL, mincnt=50,maxlvl=10,outmodel=tree1)

9.1.6 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オ プ シ = ン は 単 独 で 用 い ま す 。 例: %dmt_cross(help)

itmunit1=100

1つの表として画面出力する単独説明変数とターゲ ット変数との関連表に含まれる単独説明変数の最大 数を設定します。デフォルトは100。指定の数を1単 位として、分析結果は別々の表に出力されます。な お、カテゴリ数が非常に多い文字タイプ説明変数を 多数分析するような場合、表出力を行うTABULATE プロシジャがコンピュータ資源不足などの理由でエ ラーになる可能性があります。そのような場合でも outcross=パラメータに指定した分析結果データセッ トとoutfmt=パラメータに指定したフォーマット定義 データセットが出力されていることを確認してくだ さい。(指定がなくてもデフォルトでWORK._cross、 WORK._fmt にぞれぞれ出力されます。)これら2つの データセットが出力されていれば、再度 DMT_CROSSを実行しなくても、DMT_CROSSTAB を用いて任意の範囲の結果集計表の画面表示を自由 に行うことができます。

itmunit2=10

1つの表として画面出力するクロス説明変数とター ゲット変数との関連表に含まれるクロス説明変数の 最大数を設定します。デフォルトは10。指定の数を1 単位として、分析結果は別々の表に出力されます。 なお、カテゴリ数が非常に多い文字タイプ説明変数 を多数分析するような場合、表出力を行う

TABULATEプロシジャがコンピュータ資源不足など の理由でエラーになる可能性があります。そのよう な場合でも outcross=パラメータに指定した分析結 果データセットとoutfmt=パラメータに指定したフォ ーマット定義データセットが出力されていることを 確認してください。(指定がなくてもデフォルトで WORK._cross、WORK._fmt にぞれぞれ出力されま す。) これら2つのデータセットが出力されていれば、

再度DMT_CROSSを実行しなくても、 DMT_CROSSTAB (crossIvI=2パラメータを指定) を用いてに音の範囲のは思想までの両面表示を自由

を用いて任意の範囲の結果集計表の画面表示を自由 に行うことができます。

labeldat=&data

ラベルとフォーマットが定義されたデータセットを 指定することにより、分析結果の全変数名と文字タ イプ変数値に、それぞれ定義された変数ラベルとフ ォーマットが付加されて表示されるようになります。 デフォルトは分析データセットに設定してあり、変 数ラベルやフォーマットが定義されていた場合、自 動的に用いられます。もしもラベルもフォーマット も定義されていない場合は、変数名、変数値がその まま表示されます。

数値タイプ説明変数には、フォーマットが定義され ていたとしても無視します。なお、フォーマット定 義された変数を含むデータセットをアクセスするた めには、そのフォーマットライブラリもアクセス可 能になっている必要がありますので、ラベル定義さ れたデータセットを保存して再利用したい場合は、 フォーマットライブラリも保存しておく必要があり ます。

outfmt=_fmt

DMT_CROSSで算出した集計表における数値変数の 範囲などを表示するためのフォーマット定義をデー タセットに出力します。このデータセットは DMT_CROSSTAB, DMT_CROSSPLOTの入力に用 います。

print=

実行結果の画面出力を行うか否かを指定します。デ フォルトは分析する(実際に集計を行う)説明変数 の数が99個以下の場合はY(画面出力を行う)、100 個以上の場合はN(画面出力を行わない)です。print=N (画面出力は行わない)指定は入力データセットの 件数が多く、かつ、説明変数の数も多く時間がかか りそうな分析の場合に効果的です。実行後、 DMT_CROSSTAB, DMT_CROSSPLOTを用いて、特 定の説明変数や、ターゲット変数と関連の強い上位 の説明変数に絞って画面表示するといった使い方が できます。

title=

画面出力される表にタイトルを指定できます。指定 しない(デフォルト)場合、以下のタイトルが自動 的に付与されます。

%bquote(DMT_CROSS 分析結果: データセット:&data ターゲット:&y=%left(&target))

タイトルを指定する場合、上記のように%bquote関数の中に記述してください。

9.1.7 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_crosstab.html

分析結果を保存するHTML出力ファイル名を指定します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

9.1.8 実行例

GUI実行モードではprint=Nに設定されています。しかし、実行後に分析結果表示出力を行うかどうかを 選択可能です。

コマンド実行モードではprint=パラメータを指定し ない場合、分析する説明変数の数が99個以内の場合 はprint=Y、100個以上の場合はprint=Nに設定されま す。

(1)target=パラメータを指定し、ターゲット出現率の分布 との関連を分析する場合

ターゲットの出現率と各説明変数の統計的関連性を

AIC 値で評価し、関連の強い順に説明変数をリストした表を出力します。

%dmt_cross(data=samp_data,y=flg,target=1,x=sei nenshu)

DMT_CROSS 分析結果: 分析データセット: samp_data, ターゲット: flg="1"

				トータル件数	ターゲット件数	ターゲット再現率%	ターゲット出現率%
NO	AIC値	説明変数	値				
0	•	{ANY}	{ALL}	2,000	457	100.00	22.85
1	-16.4648	SEI 性別	1 男性	1,291	256	56.02	19.83
			2 女性	709	201	43.98	28.35
2	0.77788	NENSHU 年収		555	112	24.51	20.18
			102~255	121	36	7.88	29.75
			256~302	122	24	5.25	19.67
			303~349	124	43	9.41	34.68
			350~400	121	32	7.00	26.45
			401~449	123	34	7.44	27.64
			450~500	121	26	5.69	21.49
			501~552	122	18	3.94	14.75
			553~602	124	30	6.56	24.19
			603~663	122	28	6.13	22.95
			664~736	125	28	6.13	22.40
			737~834	121	26	5.69	21.49
			836~1278	99	20	4.38	20.20

タイトル:

コマンド実行モードでは、分析データ名 と ターゲット 変数名=ターゲット値 が表示されます。

項目: (カッコ内は language=English を指定した場合の項 目表示)

NO (NO)… 説明変数の関連の強さの順序を表しま す。 ただし、**NO=0** は全体の集計値を意味します。

AIC 値(AIC) … AIC 統計量。値が負で絶対値が大き いほど目的変数との関連が強いことを意味します。 上記の例では、全体のターゲット出現率 22.85%に対 して、男性のターゲット出現率は 19.83%、女性のタ ーゲット出現率は 28.35%となっており、観測された 男女間の出現率の差異は統計的に有意であることを 示しています。一方、年収については、ほぼ等しい 件数になるようにスタージェスの式 (ceil(1+log2(2000-555)))による12個+1個(欠損 値)の順序カテゴリに分けたときのカテゴリ別出現 率を集計すると、14.75%~34.68%の範囲に分布しま すが、AIC>0と計算され、ターゲット出現率との関 連性は無いという解釈になります。(なお、数値変数 の関連性はカテゴリ数を減らす(例えば nomergen=5 と指定する)と有意になりやすくなります。また、 数値変数、文字変数ともに、分析データ件数を増や すことによっても有意になりやすくなります。)

説明変数(ITEM) ... 説明変数名。変数ラベルが定義 されている場合は変数ラベルも表示されます。

値 (VALUE) … カテゴリ値。数値変数は自動的にカ テゴライズされます。

トータル件数 (TOTAL-(N)) … カテゴリの総件数 **ターゲット件数 (TARGET-(N))** … カテゴリのターゲ ット件数

ターゲット再現率%(SUPPORT-(%))… ターゲット件 数/(No=0のターゲット件数) *100 **ターゲット出現率%(CONFIDENCE-(%))**… ターゲッ

ト件数/トータル件数*100

CROSSLVL=2を指定した場合は、クロス説明変数を 作成し、それとターゲットとの関連表を表示します。

%dmt_cross(data=samp_data,y=flg,target=1,x=sei nenshu,crosslvl=2)

DMT_CROSS 分析結果: 分析データセット: samp_data, ターゲット: flg="1"

				トータル件数	ターゲット件数	ターゲット再現率%	ターゲット出現率%	
NO	AIC値	説明変数	値					
0		{ANY}	{ALL}	2,000	457	100.00	22.85	
1	1 -16.4648 SEI 性別	SEI 性別	1 男性	1,291	256	56.02	19.83	
			2 女性	709	201	43.98	28.35	
2	2 -2.28293 NENSHU 年収		•	555	112	24.51	20.18	
				102~348	363	102	22.32	28.10
			349~498	364	92	20.13	25.27	
			499~655	364	76	16.63	20.88	
			656~1278	354	75	16.41	21.19	

DMT_CROSS 分析結果: 分析データセット: samp_data, ターゲット: flg="1"

						トータル件数	ターゲット件数	ターゲット再現率%	ターゲット出現率%
NO	AIC値	説明変数1	値1	説明変数2	値2				
3	-19.7049	9.7049 NENSHU 年収 . 102~348 349~498 499~655	SEI 性別	1 男性	393	79	17.29	20.10	
					2 女性	162	33	7.22	20.37
			102~348	SEI 性別	1 男性	235	53	11.60	22.55
					2 女性	128	49	10.72	38.28
			349~498	SEI 性別	1 男性	223	44	9.63	19.73
					2 女性	141	48	10.50	34.04
			499~655	SEI 性別	1 男性	224	45	9.85	20.09
					2 女性	140	31	6.78	22.14
			656~1278	SEI 性別	1 男性	216	35	7.66	16.20
					2 女性	138	40	8.75	28.99

crossIvl=2を指定すると、クロスレベル1の結果とク ロスレベル 2 の結果が別々に表示されます。年収と 性別のカテゴリの組合せを新たなカテゴリとして持 つクロス変数「年収*性別」の AIC 値-19.7049 は個々 の AIC 値-16.4648 と-2.28293 のいずれよりも小さく、 クロスレベル 2 のクロス変数分析結果の表示ルール 「ケース 4」に該当するため、分析結果表に表示され ています。

ただし、数値変数 NENSHU のカテゴリ数が ceil(sqrt(12))=4 に変更されています。(カテゴリ数が 減った関係で年収とターゲット出現率とは関連があ るという分析結果に変化しています。)

クロス説明変数の項目:(カッコ内は language=English を 指定した場合の項目表示)

NO (NO)… 説明変数の関連の強さの順序を表しま す。 クロスレベル 1 の最後の番号に続いて番号付け されます。ただし、NO=0 は全体の集計値を意味しま す。

AIC 値(AIC) … AIC 統計量(値が負で絶対値が大きいほど目的変数との関連が強いことを表します)

説明変数 1 (ITEM1) ... クロス説明変数を構成する

説明変数**1**の名前

値1 (VALUE1) … クロス説明変数を構成する説明変 数**1**のカテゴリ値

説明変数 2(ITEM2) ... クロス説明変数を構成する 説明変数 2の名前

値2(VALUE2)… クロス説明変数を構成する説明変 数**2**のカテゴリ値

以下、CROSSLVL=1の表と同じ項目が表示されます。

(2)target=パラメータを指定せず、ターゲット変数の分布 との関連を分析する場合

ターゲット変数の値の変動と各説明変数の統計的関 連性を一元配置分散分析モデルにおける AIC 値で評 価し、関連の強い順に説明変数をリストした表を出 力します。目的変数が欠損値のオブザベーションは 削除されます。

%dmt_cross(data=samp_data,y=nenshu,x=sei nenrei)

DMT_CROSS 分析結果: 分析データセット: samp_data, ターゲット: nenshu

				件数	平均値	標準偏差	最小値	最大値
NO	AIC值	説明変数	値					
0		{ANY}	{ALL}	1,445	514.0498	202.7175	102	1278
1	-1.42879	SEI 性別	1 男性	898	506.3474	201.0586	102	1249
			2 女性	547	526.6947	204.7845	102	1278
2	7.401576	NENREI 年齢	20~22	126	494.8254	195.3707	108	1070
			23~25	132	524.4924	215.3209	125	1052
			26~28	122	556.6721	245.1042	161	1278
			29~32	149	516.1544	208.4451	166	1245
			33~36	144	489.8958	197.9444	106	1111
			37~40	144	513.7569	200.249	139	1198
			41~44	169	515.0355	194.371	102	1115
			45~48	150	534.9933	192.5019	149	937
			49~52	139	492.0576	181.3424	104	1138
			53~58	126	503.3254	188.1139	102	1217
			59~60	44	517.4773	199.0686	126	861

表示出カリストの項目の説明:(カッコ内は英語設定の 場合の表示です。)

NO (NO)... 説明変数の関連の強さの順序を表しま す。 ただし、NO=0 は全体の集計値を意味します。 目的変数 NENSHUが欠損のオブザベーションは削除 されて、残りの 1,445 件が分析に用いられているこ とがわかります。

AIC 値(AIC) ... **AIC** 統計量(値が負で絶対値が大きいほど目的変数との関連が強いことを表します)

说明变数(ITEM) ... 説明変数名

値(VALUE) … カテゴリ値。数値変数は自動的にカ テゴライズされます。なお、NENREIのカテゴリは スタージェスの式(ceil(1+log2(1445))=12)により 12 個のカテゴリに分けることを目標としましたが、 タイ値が多く存在したため、11 個のカテゴリに縮小 されています。

件数 (TOTAL-(N)) ... カテゴリ値に該当する件数 平均値 (MEAN) ... カテゴリのターゲット変数平均 値

標準偏差 (STD) … カテゴリのターゲット変数標準 偏差

最小値(MIN) … カテゴリのターゲット変数最小値 最大値(MAX) … カテゴリのターゲット変数最大値

CROSSLVL=2 を指定した場合は、クロス説明変数と ターゲット変数との関連表を表示します。(ここでは 省略)

(3)control=パラメータとtarget=パラメータを指定し、処 理群と対照群間のターゲット出現率の差を分析する場 合

ターゲット出現率の実施群-対照群間の差と各説明変 数の統計的関連性を AIC 値で評価し、関連の強い順 に説明変数をリストした表を出力します。

例:%dmt_cross(data=samp_data(where=(DM="1")),control=samp_data(where=(DM="0")),y=flg,target=1,x=sei nenshu)

DMT_CROSS 分析結果: 分析データセット[D]: samp_data(where=(DM="1")), ターゲット: flg="1", 対照データセット[C]: samp_data(where=(DM="0"))

				[D]-[C]出 現率の 差%	[D]-[C]出 現率の差の 標準誤差%	[D] トータ ル件数	[D]ター ゲット 件数	[D]タ ー ゲット再 現率%	[D]ター ゲット出 現率%	[C]トー タル件 数	[C]ター ゲット 件数	[C]タ ー ゲット再 現率%	[C]ター ゲット出 現率%	個別AIC 値	
NO	AIC値	説明変数	値												
0		{ANY}	{ALL}	11.36	2.03	619	190	100.00	30.69	1,381	267	100.00	19.33		
1	-42.9607	SEI 性別	1 男性	-1.67	2.51	344	64	33.68	18.60	947	192	71.91	20.27	-19.8344	
			2 女性	28.54	3.47	275	126	66.32	45.82	434	75	28.09	17.28	-21.1262	
2	13.63147	NENSHU		12.47	3.75	162	47	24.74	29.01	393	65	24.34	16.54	1.555897	
		年収	102~255	14.42	9.17	35	14	7.37	40.00	86	22	8.24	25.58	1.720172	
			256~302	15.37	7.67	40	12	6.32	30.00	82	12	4.49	14.63	1.379922	
				303~349	15.33	8.89	45	20	10.53	44.44	79	23	8.61	29.11	1.709971
			350~400	7.81	9.18	31	10	5.26	32.26	90	22	8.24	24.44	1.489359	
			401~449	15.87	8.50	42	16	8.42	38.10	81	18	6.74	22.22	1.637706	
			450~500	13.27	8.47	32	10	5.26	31.25	89	16	5.99	17.98	1.736804	
			501~552	5.98	6.98	37	7	3.68	18.92	85	11	4.12	12.94	1.752822	
			553~602	-6.69	8.47	36	7	3.68	19.44	88	23	8.61	26.14	-2.72529	
			603~663	7.88	8.42	35	10	5.26	28.57	87	18	6.74	20.69	1.607701	
			664~736	13.61	7.77	45	14	7.37	31.11	80	14	5.24	17.50	1.710877	
			737~834	18.86	7.73	45	15	7.89	33.33	76	11	4.12	14.47	0.62718	
			836~1278	5.07	8.50	34	8	4.21	23.53	65	12	4.49	18.46	1.428351	

表示出力項目の説明:(カッコ内は英語設定の場合の表示です。)

NO (NO)… 説明変数の関連の強さの順序を表しま す。 ただし、**NO=0** は全体の集計値を意味します。

AIC 値(AIC) … AIC 統計量(値が負で絶対値が大きいほど目的変数との関連が強いことを表します)

説明変数(ITEM) ... 説明変数名

値(VALUE)… カテゴリ値。数値変数は自動的にカ テゴライズされます。

[D]-[C]出現率の差%

([D]-[C]Dif. of CONFIDENCE(%))... [D] (処理群)のタ
 ーゲット出現率% - [C] (対照群)の出現率%。
 [D]-[C]出現率の差の標準誤差%

([D]-[C]StdErr of Dif. of CONFIDENCE(%))... 出現率の 差%の推計値としてのばらつき(標準偏差)を表し ます。小さいほど良い推計値であることを意味しま す。

以下の集計値は[D](処理群)と[C](対照群)それぞれについて表示されます。

トータル件数(TOTAL-(N))… カテゴリの総件数 **ターゲット件数(TARGET-(N))**… カテゴリのターゲ ット件数

ターゲット再現率%(SUPPORT-(%))… ターゲット件 数/(No=0 のターゲット件数) * 1 0 0

ターゲット出現率%(CONFIDENCE-(%))… ターゲット件数/トータル件数*100

最後に以下の項目が表示されます。

個別 AIC 値 (Each AIC) ... カテゴリの AIC 値。カテ ゴリの[D]-[C]出現率の差が全体平均の[D]-[C]出現率 の差と比較して統計的に有意であるかどうかを判定 します。(より正確には、カテゴリごとにターゲット の全体出現率で調整後の処理群と対照群間のターゲ ット出現率の差の有意性を表す AIC 値を計算してい ます。) 負の値で絶対値が大きいほど有意であること を意味します。説明変数の AIC 値はその変数の各カ テゴリの個別 AIC 値を合計した値から 2 を差し引い た値で与えています。

上記の例では、NENSHU に関する個別 AIC 値は、 553-602 のカテゴリのみ -2.7 と負の値をとっており、 処理群と対照群間のターゲット出現率の差 -6.69 が 全体平均の 11.36 と有意であることを示しています。

CROSSLVL=2を指定した場合は、クロス説明変数と ターゲットとの関連表を表示します。(ここでは省 略)

(4) control=パラメータを指定し、target=パラメータを 指定せず、処理群と対照群間のターゲット変数の平均 値の差を分析する場合

ターゲット変数の平均値の実施群-対照群間の差と各 説明変数の統計的関連性を AIC 値で評価し、関連の 強い順に説明変数をリストした表を出力します。

例:%dmt_cross(data=samp_data(where=(DM="1")),control=samp_data(where=(DM="0")),y=kingaku,x=sei nenshu)

DMT_CROSS 分析結果: 分析データセット[D]: samp_data(where=(DM="1")), ターゲット: kingaku, 対照データセット[C]: samp_data(where=(DM="0"))

				[D]-[C]平均値 の差	[D]-[C]平均値の差の標 準誤差	[D]件 数	[D]平均 値	[D]標準偏 差	[C]件 数	[C]平均 値	[C]標準偏 差	個別AIC 値	
NO	AIC値	説明変数	値										
0		{ANY}	{ALL}	29.39109	351.9012	619	129.588	257.2506	1,381	100.197	240.1178		
1	-51.3579	SEI 性別	1 男性	-48.3264	299.0199	344	56.10756	171.8592	947	104.434	244.6984	-27.0971	
			2 女性	130.5538	386.6487	275	221.5055	311.1448	434	90.95161	229.5346	-22.2608	
2	-4.89021	NENSHU 年		2.784375	81.80334	162	30.06173	47.22545	393	27.27735	66.79479	-18.9139	
		41X	102~255	38.5309	220.6036	35	123.2286	160.752	86	84.69767	151.0786	1.91234	
			256~302	72.98841	255.4988	40	134.025	207.0467	82	61.03659	149.7041	0.257554	
			303~349	17.21266	289.6953	45	149.2	198.9193	79	131.9873	210.6051	1.900268	
			350~400	6.210394	313.9653	31	133.3548	216.9979	90	127.1444	226.9055	1.754218	
			401~449	36.44444	323.3434	42	155.6667	232.0595	81	119.2222	225.1651	1.973427	
				450~500	10.79284	323.2868	32	120.0625	221.0056	89	109.2697	235.9468	1.848951
			501~552	22.00986	323.8484	37	106.6216	235.8422	85	84.61176	221.9376	1.972565	
			553~602	-68.7715	427.1905	36	124.9444	273.6443	88	193.7159	328.0404	-0.48423	
			603~663	18.93169	447.7116	35	178.8857	317.7384	87	159.954	315.4171	1.972673	
			664~736	87.72083	491.3037	45	236.9333	367.892	80	149.2125	325.6299	1.162337	
			737~834	127.9012	516.0578	45	260.8222	402.001	76	132.9211	323.5906	-0.15973	
			836~1278	1.774661	618.6431	34	215.8824	418.6953	65	214.1077	455.4268	1.913346	

表示出力項目の説明:(カッコ内は英語設定の場合の表示です。)

NO(NO)... 説明変数の関連の強さの順序を表します。 ただし、NO=0 は全体の集計値を意味します。

AIC 値(AIC) ... **AIC** 統計量(値が負で絶対値が大きい ほど目的変数との関連が強いことを表します)

説明変数(ITEM) ... 説明変数名

値(VALUE) ... カテゴリ値。数値変数は自動的にカテ ゴライズされます。

[D]-[C]平均値の差%([D]-[C]Dif. of MEAN) ... [D] (処理
 群)のターゲット平均値 - [C] (対照群)の平均値。
 [D]-[C]出現率の差の標準誤差%([D]-[C]StdErr of Dif.
 of MEAN) ... 平均値の差の推計値としてのばらつき
 (標準偏差)を表します。小さいほど良い推計値であることを意味します。

以下の集計値は[D](処理群)と[C](対照群)それぞれについて表示されます。

件数(TOTAL-(N)) … カテゴリ値に該当する件数 平均値(MEAN) … カテゴリのターゲット変数平均値 標準偏差(STD) … カテゴリのターゲット変数標準 偏差

最後に以下の項目が表示されます。

個別 AIC 値(Each AIC) ... カテゴリの AIC 値。カテゴ リの[D]-[C]平均値の差が全体の[D]-[C]平均値の差と 比較して統計的に有意であるかどうかを判定します。 (より正確には、カテゴリごとに全体平均値で調整 後の処理群と対照群間の平均値の差の有意性を表す AIC 値を計算しています。)負の値で絶対値が大きい ほど有意であることを意味します。説明変数の AIC 値はその変数の各カテゴリの個別 AIC 値を合計した 値から2を差し引いた値で与えています。

上記の例では、NENSHU に関する個別 AIC 値は、 553-602 のカテゴリのみ -0.48 と負の値をとってお り、処理群と対照群間の KINGAKU 平均値の差 -68.77 が全体平均の 29.39 と比較して有意であるこ とを示しています。

CROSSLVL=2 を指定した場合は、クロス説明変数と ターゲット変数との関連表を表示します。(ここでは 省略)

9.1.9 層別分析の例

例えば、住居区分別にクロス分析を行うには、以下 のように、コマンド実行モードでマクロ言語を使っ たプログラムを書いて実行します。

proc freq data=samp_data(keep=jukyo);

tables jukyo/noprint out=jukyo(keep=jukyo); run:

data null ;

if _n_=1 then call symput("n",compress(n));
set jukyo nobs=n;

call symput("JUKYO"||left(_n_),compress(jukyo)); run;

(マクロ変数値の確認)

%put &n, &JUKYO1, &JUKYO2, ..., &&JUKYO&n;

(ログ) 8,,1,...,7

(住居区分別にクロス分析を行う) %macro create_cross; %do i=1 %to &n; %dmt_cross(data=samp_data(where=(jukyo="& &JUKYO&i")),y=flg,target=1,x=sei--DM,outcross=CR OSS_&&JUKYO&i,outfmt=FMT_&&JUKYO&i,outaic =AIC_&&JUKYO&i) %end; %mend create_cross; %create_cross

9.1.10 データセット出力

出カクロス集計データ(outcross=_cross) クロス分析結果画面情報イメージをデータセット出 力します。(GUI実行モードでは、分析ルートディレクト リ¥CROSS¥outcrossの出力データセット名¥outcrossの 出力データセット名.WPD の名前で保存されます)

注意:層別変数は文字変数で半角英数字の短い値を 仮定しています。数値変数の場合は、where=(変数名 =値)の値を引用符で囲うとエラーになります。

outcross=出力データセット	(control=パラメータ	*指定なしの場合)
-------------------	----------------	-----------

変数名	タイプ	長さ	内容	備考		
ITEM_NO	数值	8	変数の順序(AIC値の小さい順)	0は全体を意味する		
К	数值	8	説明変数クロスレベル数	0は全体を意味する		
AIC	数值	8	AIC統計量	負の絶対値が大きいほど関連大を表す		
ITEM1	文字	32	説明変数1			
CAT1	文字	可変	説明変数1のカテゴリ値			
ITEM2	文字	32	説明変数2	crosslvl=2指定の場合		
CAT2	文字	可変	説明変数2のカテゴリ値	crosslvl=2指定の場合		
TOTAL_N	数值	8	カテゴリ件数			
TARGET_N	数值	8	カテゴリ内ターゲット件数			
CONF_PCT	数值	8	カテゴリ内ターゲット出現率	target=パラメータ指定の場合		
SUPPORT_PCT	数值	8	カテゴリ内ターゲット再現率			
MEAN	数值	8	カテゴリ内ターゲット変数平均値			
STD	数值	8	カテゴリ内ターゲット変数標準偏差	トーー・パーノークドウケーの場合		
MIN	数值	8	カテゴリ内ターゲット変数最小値	targetーバリメータ相定なしの場合		
MAX	数值	8	カテゴリ内ターゲット変数最大値			
CATEGORY1	数值	8	説明変数1のカテゴリ値の順序を決めるための変数	文字変数カテゴリはオブザベーション番号、数値変数カテゴリは平均値		
item_cat1	文字	可変	説明変数1の名前+カテゴリ番号	フォーマット表示するためユニークな値を持たせてある		
CATEGORY2	数值	8	説明変数2のカテゴリ値の順序を決めるための変数	crosslvl=2指定の場合		
item_cat2	文字	可変	変数変数2の名前+カテゴリ番号	crosslvl=2指定の場合		

outcross=出力データセット(control=パラメータ指定ありの場合)

変数名	タイプ	長さ	内容	備考		
ITEM_NO	数值	8	変数の順序(AIC値の小さい順)	0は全体を意味する		
К	数値	8	説明変数クロスレベル数	0は全体を意味する		
AIC	数值	8	AIC統計量	負の絶対値が大きいほど関連大を表す		
ITEM1	文字	32	説明変数1			
CAT1	文字	可変	説明変数1のカテゴリ値			
ITEM2	文字	32	説明変数2	crosslvl=2指定の場合		
CAT2	文字	可変	説明変数2のカテゴリ値	crosslvl=2指定の場合		
TOTAL_N1	数値	9	処理群のカテゴリ件数			
TOTAL_N2	数值	9	対照群のカテゴリ件数			
TARGET_N1	数值	8	処理群のカテゴリ内ターゲット件数			
CONF_PCT1	数値	8	処理群のカテゴリ内ターゲット出現率(%表示)			
SUPPORT_PCT1	数值	8	処理群のカテゴリ内ターゲット再現率(%表示)			
TARGET_N2	数值	8	対照群のカテゴリ内ターゲット件数			
CONF_PCT2	数值	8	対照群のカテゴリ内ターゲット出現率(%表示)	target=パラメータ指定の場合		
SUPPORT_PCT2	数值	8	対照群のカテゴリ内ターゲット再現率(%表示)			
CONF_PCT3	数值	8	処理群のターゲット出現率と対照群のターゲット出現率の差 (%表示)			
CONF_PCT3_SE	数值	8	ターゲット出現率の差の標準誤差(%表示)			
MEAN1	数値	8	処理群のカテゴリ内ターゲット変数平均値			
STD1	数値	8	処理群のカテゴリ内ターゲット変数標準偏差			
MEAN2	数值	8	対照群のカテゴリ内ターゲット変数平均値			
STD2	数値	8	対照群のカテゴリ内ターゲット変数標準偏差	target=パラメータ指定なしの場合		
MEAN1	数值	8	処理群のカテゴリ内ターゲット変数平均値			
MEAN3	数値	8	処理群のターゲット出現率と対照群のターゲット平均値の差			
MEAN3_SE	数値	8	ターゲット平均値の差の標準誤差			
EACH_AIC	数值	8	カテゴリの個別AIC値			
CATEGORY1	数值	8	説明変数1のカテゴリ値の順序を決めるための変数	文字変数カテゴリはオブザベーション番号、数値変数カテゴリは平均値		
item_cat1	文字	可変	説明変数1の名前+カテゴリ番号	フォーマット表示するためユニークな値を持たせてある		
CATEGORY2	数值	8	説明変数2のカテゴリ値の順序を決めるための変数	crosslvl=2指定の場合		
item_cat2	文字	可変	変数変数2の名前+カテゴリ番号	crosslvl=2指定の場合		

outfmt=出力データセット

outcross=データセットの説明変数名、説明変数カテ ゴリ値の表示フォーマット定義を格納しています。 (GUI実行モードでは、分析ルートディレクトリ ¥CROSS¥outcrossの出力データセット名¥_fmt.WPD の 名前で自動保存されます)

outfmt=出力データセット

変数名	タイプ	長さ	内容	備考
fmtname	文字	32	フォーマット名	値"_item"は変数名、値"_cat"は変数値に関する。
start	文字	320	開始値	
end	文字	320	終了値	
hlo	文字	1	high/low/other 識別フラグ	
type	文字	1	タイプ	
label	文字	289	説明変数2のAIC値	289=変数名(32)+空白(1)+変数ラベル(256)

出力AIC統計量データ(outaic=_aic)

クロス分析結果画面表示された説明変数とターゲット変数とのAIC値をデータセット出力します。 デフォルトは WORK._AIC という名前で出力され ます。(GUI実行モードでは、分析ルートディレクトリ ¥CROSS¥outcrossの出力データセット名¥_aic.WPD の 名前で自動保存されます)

備者

К	数値	8	説明変数クロスレベル数	0は全体を意味する
varname1	文字	32	説明変数1	
varname2	文字	32	説明変数2	crosslvl=2指定の場合
aic	数値	8	AIC値	
subset_aic1	数値	8	説明変数1のAIC値	crosslvl=2指定の場合
subset aic2	数値	8	説明変数2のAIC値	crosslvl=2指定の場合

出力全AIC統計量データ(oaicall=_aicall)

さらに、outaic=出力データセットと同じ形式のデー タセットWORK._AICALLが自動的に出力されます。 この中には、crosslvl=2を指定した場合に画面出力さ れないクロス説明変数を含むすべての説明変数の AIC値が含まれています。(GUI実行モードでは、分析 ルートディレクトリ¥CROSS¥outcrossの出力データセット 名¥_aicall.WPD の名前で自動保存されます)

oaicall=出力データセット

変数名	タイプ	長さ	内容	備考
К	数値	8	説明変数クロスレベル数	0は全体を意味する
varname1	文字	32	説明変数1	
varname2	文字	32	説明変数2	crosslvl=2指定の場合
aic	数値	8	AIC值	
subset_aic1	数値	8	説明変数1のAIC値	crosslvl=2指定の場合
subset_aic2	数値	8	説明変数2のAIC値	crosslvl=2指定の場合

9.1.11 欠損値の取り扱い

文字タイプのターゲット変数、説明変数はいずれも 有効な値の1つとみなされます。

数値タイプの説明変数に特殊欠損値(.A~.Z)が存在した場合は通常欠損値(.)に変換された上で使用されます。

数値タイプのターゲット変数の欠損値は、target=パ ラメータを指定しなかった場合、データに存在する と、そのオブザベーションは分析から除外されます。 target=パラメータを指定した場合は、数値タイプの ターゲット変数の欠損値(.)は、特殊欠損値(._,.A~.Z) と区別して他の数値と同様に取り扱われます。

9.1.12 制限

処理するオブザベーション数に制限はありませんが、 コンピュータ資源等の制約により実質的に取扱える オブザベーション数には限りがあります。

1度に入力できる説明変数の最大数は2,000です。た だし、各変数のカテゴリ数、その他の要因によるコ ンピュータ資源不足などの理由で1回の分析では 2,000未満の説明変数しか取り扱えない場合もあり 得ます。そのような場合は、1回の分析において指定 する説明変数の数を少なくして実行してください。 特に、crosslvl=2 を指定する場合は変数の数を少なめ に設定してください。

入力データセットに以下の変数が存在する場合、警告を出して処理を中止します。入力データセットから削除しておくか、変数名を変えてください。(_v&i.c は_V+数字+Cという形式の変数名を表します。)

_id _item _obsno _targflg _v&i.c

9.1.13 コマンド実行モードでの注意

ユーザ定義フォーマットがついた変数を含むデータ セットをアクセスするためには、そのフォーマット も利用可能でなければなりません。ユーザ定義フォ ーマットのついた変数を含む分析データセットを永 久保存する場合は、そのフォーマットも永久保存し てください。(注:GUI実行モードでは自動的に利用 可能にする仕組みが備わっています)

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_AIC \$_cat \$C&i.V \$_DELITM \$_DELITM \$_item \$_ITMCAT \$_VARTYP V&i.C

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&は数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type lab&i nobs spc&i typ&i zketa _speclen _specnum _errormsg _XSEL _XDEL

9.2 結果表(dmt_crosstab)

DMT_CROSSTAB 指定画面	X
クロス分析結果表	入力指定のリセット
入力クロスデータ (*cross=)	sort btn
[ログ]	実行 前回 戻る

9.2.1 概要

クロス分析結果表(DMT_CROSSTAB) はクロス分析 (DMT_CROSS) の分析結果出力データセットを入 力として、分析結果の全部または指定の一部を画面 表示するためのマクロです。AIC値に基づく関連の大 きい順に並べた説明変数番号の開始-終了範囲、も しくは説明変数名を指定することにより表示する範 囲を選べます。

9.2.2 指定方法

(コマンド実行モードでの指定)

%dmt_crosstab(help,cross=_cross,fmt=_fmt ,x=,dropx=,no=,crosslvl=1,no0=Y,title=,nolabel= ,order=,pctf=7.2,meanf=best8.,aicf=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,language=JAPANESE ,outhtml=dmt_crosstab.html,outpath=)

(GUI実行モードでの変更点)

help, fmt=, outhtml=, outpath=パラメータは指定不可。(fmt=, outhtml=, outpath=指定は自動で行われます。)

・no0= はオプション画面で指定します。

(必須パラメータ)

必須パラメータはありません。

(オプションパラメータ)

20個のパラメータはすべて任意指定です。(=の右辺 の値はデフォルト値を表しています) %dmt_crosstab() とパラメータ指定なしでマクロを 呼出すと、WORK._cross データセットに含まれる crosslvl=1 の全説明変数について分析結果を画面表 示する指定になります。

help … 指定方法のヘルプメッセージの表示 (コマン ド実行モードでのみ有効) クロス集計結果入力データセット名の指定

(cross=<u>cross</u>) ... DMT_CROSSで作成したクロス分析結果出 カデータセットを指定します。 集計フォーマット定義入力データセット名の指定 (fmt=_fmt) ... DMT_CROSSで作成した分析結果出力デー タセットを指定します。(コマンド実行モード でのみ有効。GUI実行モードでは自動的に使用 されます。) 表示したい説明変数リストの指定 (x=) ... 説明変数を名前で選択表示します(例: x=a b c, x = x1 - x4 a - -z f :) x=説明変数リストから除外する変数リストの指定 (dropx=) 表示する説明変数の番号の指定 (no=) ... 説明変数を関連の強さを表す番号により選 択表示します(例: no=1:3, no=1 2 5) 表示するクロス集計レベルの指定(crosslvl=1) 全体平均値の表示 (no0=Y) ... ターゲットの全体平均出現率もしくはター ゲット変数の全体平均値を表の最初の行に表示 する(Y)かしない(N)かを指定。 分析結果のカテゴリ表示順序の指定 (order=) ... クロス分析結果表における説明変数値の並 び順を指定。(order=/A/D) 値の昇順(ブランク), ターゲット出現率または平均値の昇順(A),ター ゲット出現率または平均値の降順(D) (コマンド実行モードでのみ有効。 GUI実行モ ードでは常にブランク) 変数ラベルと値ラベルを表示しない (nolabel=N) ... 変数ラベルと値ラベルを用いずに変数名、 変数値を用いた結果表を作成。 画面出力のタイトルの指定 (title=) (%str,%nrstr,%bquote などの関数で囲んで 指定すること) 百分率の表示フォーマットの指定 (pctf=7.2) 平均値・標準偏差の表示フォーマットの指定 (meanf=best8.) AIC値の表示フォーマットの指定 (aicf=best8.) 差分AIC分析結果表における処理群(DATA)を表す 記号 (d_label=[D]) 差分AIC分析結果表における対照群(Control)を表す記 号 (c label=[C]) 差分AIC分析結果表における処理群-対照群間の差を 表す記号 (dif_label=[D]-[C]) 言語の選択 (language=JAPANESE) HTML出力ファイル名 (outhtml=dmt_crosstab.html) (コマンド実行モードでのみ有効) HTMLファイル出力ディレクトリの指定 (outpath=)(コマ ンド実行モードでのみ有効)

9.2.3 パラメータの詳細

表示する説明変数の指定 (x=)

表示したい説明変数名を指定します。このパラメー タを省略すると、全変数が指定されたものとみなさ れます。間に1個以上のスペースを入れて、複数の説 明変数を指定可能です。また、コロン(:)省略指定とハ イフン(-)省略指定と_ALL_特殊指定 も利用可能です が、,ハイフンハイフン(--)省略指定と

NUMERIC,_CHARACTER_ 特殊指定は実行結果 が目的に合致しなくなるため指定しないでください。 (cross=データセットの item1,item2 変数名を参照 して変数名を抽出した_data データセットを作成し、 ここから有効な名前の説明変数名をチェックしてい ます。)

なお、no=パラメータと同時に指定可能です。指定した場合は、crosslvl=パラメータの条件を満たす中で、 x=パラメータとno=パラメータのいずれかの条件を 満たす範囲が選択されます。

また、crosslvl=2 指定の場合、x=パラメータに指定 された変数が item1, item2 のいずれかに該当するク ロス説明変数が抽出されます。

例1: x=age (説明変数1個を指定)

例2:x=age seibetsu (説明変数2個を指定) 例3:cross=a,x=abc: (入力データセットaに含まれ るabcで始まる全説明変数を指定)

例4: **x=age x1-x5 q**: **nenshu** (説明変数指定方法の 複合例)

除外する説明変数の指定 (dropx=)

x=パラメータと共に指定します。x=パラメータに指 定した説明変数の中で分析から除外する説明変数を 指定します。デフォルトは ブランクです。x=パラメ ータと同じ指定方法が使えます。 例:

x=_all_,dropx=a_: (a_で始まる変数およびター ゲット変数以外のdata=入力データセットの全変数 を説明変数に指定)

表示する説明変数Noの指定 (no=)

cross=データセットの 変数 item_no の値に対応し て表示する範囲をリスト指定します。デフォルトの ブランクはcross=データセットに含まれるすべての 番号の説明変数を表示対象とする意味です。no=パラ メータの指定方法は、番号を表す数字(例 1)、もしく は、範囲を表す 数字-数字(例 1-5) をブランクで区切 って並べて指定します。例えば、以下のような指定 が可能です。

例1:no=1 (最初の説明変数1個のみを指定) 例2:no=157 (説明変数3個を指定) 例3:no=1-7 (1番から7番の連続した範囲を指定) 例4:no=1-710 (1番から7番の連続した範囲と10 番の8個の説明変数を指定)

存在しない番号が指定された場合はエラーになりま す。(cross=データセットの item_no変数値を参照し て"NO"+"item_no変数値"を名前とした変数を持つ _item_no データセットを作成し、ここから有効な名 前の説明変数名をチェックしています。)なお、x=パ ラメータと同時に指定可能です。指定した場合は、

Data Bring New Insight to Your Business

両者の条件のいずれかを満たす範囲が選択されます。

クロス集計レベル (crosslvl=1)

説明変数とターゲット値もしくはターゲット変数間の関連性分析結果(crossIvl=1)、2つの説明変数間のクロス説明変数とターゲット値もしくはターゲット 変数間の関連性分析結果(crossIvl=2)のいずれかを 表示するかを選択します。cross=入力データセット に crossIvl=2(変数K=2)の分析結果が存在するとき は、crossIvl=2を指定することにより、その部分の分 析結果を選択して表示できます。

全体平均値の表示 (no0=Y)

ターゲット値の全体出現率またはターゲット変数の 全体平均値の集計結果を表す行を最初の行に表示す るか否かを選択します。デフォルトは no0=Y (表示 する)です。no0=YまたはNを指定します。

表示タイトル (title=)

画面出力される表にタイトルを指定できます。 タイトルを指定する場合、特殊文字が含まれている 場合は、%bquote関数の中に、%と&を文字として認 識させたい場合は%nrstr関数の中に記述してください。

言語(language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

分析結果のカテゴリ表示順序の指定 (order=)

order=パラメータを指定しない場合、各説明変数のカ テゴリの並びはカテゴリ値の昇順です。

order=A を指定すると、ターゲット値(出現率、平均値、または処理群と対照群間の出現率または平均値の差)の昇順にカテゴリを並べて表示します。 order=D を指定すると、ターゲット値の降順にカテゴリを並べて表示します。

変数ラベルと値ラベルを表示しない (nolabel=N)

変数ラベルと文字変数値に対する値ラベルのかわり に、本来の変数名、変数値の表示に変わります。元 の値を知りたい場合や日本語ラベルを表示したく無 い場合に指定します。

9.2.4 コマンド実行モードで有効なパラメータの詳細

fmt=_fmt

DMT_CROSSマクロを実行すると出力されるAIC集 計表の説明変数のラベルと文字説明変数カテゴリ値 のフォーマット定義データセットを入力として指定 します。デフォルトは WORK._fmt です。

help

パラメータ指定方法をログ画面に表示します。この オ プ シ = ン は 単 独 で 用 い ま す 。 例: %dmt_crosstab(help)

9.2.5 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_crosstab.html

分析結果を保存するHTML出力ファイル名を指定します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

9.2.6 実行例

DMT_CROSS マクロの画面からは分析実行後、自動 的にクロス分析結果表の表示が行えます。しかし、 DMT_CROSSTABマクロを用いると、x=パラメータ、 no=パラメータ、crossIvl=パラメータ およびno0=パ ラメータにより、表示する範囲を選択し、繰り返し 画面出力することが可能です。

例1:関連の高い方から3個の説明変数のみ表示 %dmt_cross(data=samp_data,y=flg,target=1 ,x=sei--DM,crosslvl=2,print=N)

%dmt_crosstab(crosslvl=1,no=1-3)

Data Bring New Insight to Your Business

				トータル件 数	ターゲット 件数	ターゲット再現 率96	ターゲット出現 率%
NO	AIC値	説明変数	値				
0		{ANY}	{ALL}	2,000	457	100.00	22.85
1	-423.28	JUKYO 住居	不明	66	25	5.47	37.88
			1 持家(自己所 有)	400	15	3.28	3.75
			2 持家(家族所 有)	251	9	1.97	3.59
			3 賃貸マンショ ン	285	130	28.45	45.61
			4 借家	390	161	35.23	41.28
			5 アパート	251	95	20.79	37.85
			6 资	84	4	0.88	4.76
			7 社宅	273	18	3.94	6.59
2	-239.976	GAKUREKI 最終学歴	不明	3	0	0.00	0.00
			1 中学	356	184	40.26	51.69
			2 高校	689	172	37.64	24.96
			3 専門学校	513	48	10.50	9.36
			4 大学	293	25	5.47	8.53
			5 大学院	146	28	6.13	19.18
3	-44.545	KAZOKU_KOSEI 家族	不明	48	16	3.50	33.33
		構成	1 独身同居家族 あり	697	193	42.23	27.69
			2 独身単身	307	91	19.91	29.64
			3 既婚子供あり	572	86	18.82	15.03
			4 既婚子供なし	349	59	12.91	16.91
			5 独身子供あり	27	12	2.63	44.44

DMT_CROSS 分析結果データセット: _cross

例2:変数を選択して表示 %dmt_crosstab(crosslvl=2,x=DM)

DMT_CROSS 分析結果データセット: _cross

						トータル件数	ターゲット件数	ターゲット専現単物	ターゲット出現率
NO	AIC植	説明変数1	積1	説朝変数2	值2				
		(ANY)	(ALL)	(ANY)	(ALL)	2000.00	457.00	100.00	22.8
1	-478.803	DM プロモーション	0 界実趣	JUKYO 住居	不朝	44.00	14.00	3.06	31.8
				1 持家(自己所有)	276.00	1.00	0.22	0.3	
					2 持家(家族所有)	176.00	1.00	0.22	0.5
					3 賃貸マンション	184.00	80.00	17.51	43.4
					4 借家	269.00	99.00	21.66	35.8
					5アパート	183.00	65.00	14.22	35.5
					6 廃	61.00	0.00	0.00	0.0
					7社宅	188.00	7.00	1.53	3.7
			1 実施	JUKYO 佳居	不明	22.00	11.00	2.41	50.0
					1 持承(自己所有)	124.00	14.00	3.06	11.2
					2 持家(家族所有)	75.00	8.00	1.75	10.6
				3 賃貸マンション	101.00	50.00	10.94	49.5	
					4 借來	121.00	62.00	13.57	51.2
					5アパート	68.00	30.00	6.56	44.1
					6 25	23.00	4.00	0.88	17.3
					7社宅	85.00	11.00	2.41	12.9
	-290.527	DMプロモーション	0 非実績	隋 GAKUREKI 最終学問	不明	0.00	0.00	0.00	
					1 中学	217.00	79.00	17.29	36.4
					2 高校	468.00	114.00	24.95	24.3
					3 専門学校	368.00	29.00	6.35	7.8
					4大学	220.00	20.00	4.38	9.0
					5大学院	108.00	25.00	5.47	23.1
			1 東總	GAKUREKI 最終学歴	不明	3.00	0.00	0.00	0.0
					1 中学	139.00	105.00	22.98	75.5
					2 高校	221.00	58.00	12.69	26.2
					3専門学校	145.00	19.00	4.16	13.1
					4大学	73.00	5.00	1.09	6.8
					5大学院	38.00	3.00	0.66	7.8
	-79.5023	DMプロモーション	0 异实施	SEI 性别	1男性	947.00	192.00	42.01	20.2
					2女性	434.00	75.00	16.41	17.2
			1 実施	SEI 性别	1 男性	344.00	64.00	14.00	18.6
					2 4/18	275.00	126.00	27.67	45.0

DM がクロス変数の一方に含まれるクロス変数のみ を抽出した AIC 分析結果を表示しています。

上記の例は、DM を含む2変数のクロス効果(交互作 用効果)の中で、購入有無の変動と関連が高い甲後 作用効果を抽出しています。なお、DM 送付有無と他 の説明変数との交互作用効果はアップリフトモデル で重要です。

例3:分析結果のカテゴリ表示順序の指定

%dmt_cross(data=samp_data,y=flg,target=1,x=sei nenshu,crosslvl=2,print=N)

%dmt_crosstab(order=A,crosslvl=1 ,title=%nrstr(%dmt_crosstab(order=A,crosslvl=1)))

%dmt_crosstab(order=A,crosslvl=1)

NO	AIC値	説明変数	値	トータル件数	ターゲット件数	ターゲット再現率%	ターゲット出現率%
0		{ANY}	{ALL}	2,000	457	100.00	22.85
1	-16.4648	SEI 性別	1 男性	1,291	256	56.02	19.83
		SEI 性別	2 女性	709	201	43.98	28.35
2	-2.28293	NENSHU 年収		555	112	24.51	20.18
		NENSHU 年収	499~655	364	76	16.63	20.88
		NENSHU 年収	656~1278	354	75	16.41	21.19
		NENSHU 年収	349~498	364	92	20.13	25.27
		NENSHU 年収	102~348	363	102	22.32	28.10

%dmt_crosstab(order=D,crosslvl=2 ,title=%nrstr(%dmt_crosstab(order=D,crosslvl=2)))

%dmt_crosstab(order=D,crosslvl=2)

NO AIC	説明変数1	值1	說明愛数2	値2	トータル件数	ターゲット-件数	ターゲット・再現率%	ターゲット-出現率%
0	. {ANY}	(ALL)		{ALL}	2,000	457	100.00	22.85
3 -19.704	9 NENSHU 年収	102~348	SEI 性别	2 女性	128	49	10.72	38.28
	NENSHU 年収	349~498	SEI 性別	2 女性	141	48	10.50	34.04
	NENSHU 年収	656~1278	SEI 性別	2 女性	138	40	8.75	28.99
	NENSHU 年収	102~348	SEI 性別	1 男性	235	53	11.60	22.55
	NENSHU 年収	499~655	SEI 性別	2 女性	140	31	6.78	22.14
	NENSHU 年収		SEI性別	2 女性	162	33	7.22	20.37
	NENSHU 年収		SEI 性別	1 男性	393	79	17.29	20.10
	NENSHU 年収	499~655	SEI 性別	1 男性	224	45	9.85	20.09
	NENSHU 年収	349~498	SEI 性別	1 男性	223	44	9.63	19.73
	NENSHU 年収	656~1278	SEI 性別	1 男性	216	35	7.66	16.20
	NENSHU 年収 NENSHU 年収 NENSHU 年収	499~655 349~498 656~1278	SEI 性別 SEI 性別 SEI 性別	1 男性 1 男性 1 男性	224 223 216	45 44 35	9.85 9.63 7.66	

9.2.7 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_AIC \$_cat \$_item \$_ITMCAT \$_VARTYP

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

_errormsg
9.3 結果図(dmt_crossplot)

入力指定のリセット
a suit la tu
sort Dth
ま行前回日の
^

9.3.1 概要

クロス分析結果の図示(DMT_CROSSPLOT)はクロ ス分析(DMT_CROSS)で分析した各説明変数カテ ゴリごとのターゲット出現率、もしくはターゲット 変数の分布の違いをグラフ表示するマクロです。AIC 値に基づく関連の大きい順に並べた説明変数番号の 開始-終了範囲、もしくは任意の説明変数名を指定 することにより図示する範囲を選べます。

9.3.2 指定方法

(コマンド実行モードでの指定)

%dmt_crossplot(help,cross=_cross,fmt=_fmt ,x=,dropx=,no=,crosslvl=1,type=,title=,nolabel= ,order=,pctf=7.2,meanf=best8.,aicf=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,language=JAPANESE,graph_language=ENGLISH ,dev=GIF,outhtml=dmt_crossplot.html,outpath=)

(GUI実行モードでの変更点)

help, fmt=, outhtml=, outpath=パラメータは指定不可。(fmt=, outhtml=, outpath=指定は自動で行われます。)

(必須パラメータ)

必須パラメータはありません。

(オプションパラメータ)

22個のパラメータはすべて任意指定です。(=の右辺 の値はデフォルト値を表しています) なお、%dmt_crossplot() とパラメータ指定なしでマ クロを呼出すと、WORK._cross データセットに含ま れる crosslvl=1 の全説明変数についてグラフを画面 表示する指定になります。

help … 指定方法のヘルプメッセージの表示 (コマン ド実行モードでのみ有効) クロス集計結果入力データセット名の指定

Data Bring New Insight to Your Business 9 分析画面 ②項目分析 9.3 結果図 (dmt_crossplot)

(cross=<u>cross</u>) ... DMT_CROSSで作成したクロス分析結果出 カデータセットを指定します。 集計フォーマット定義入力データセット名の指定 (fmt=_fmt) … DMT_CROSSで作成した分析結果出力デー タセットを指定します。(コマンド実行モード でのみ有効。GUI実行モードでは自動的に使用 されます。) 図示したい説明変数リストの指定 (x=) ... 説明変数を名前で選択表示します(例: x=a b c, x = x1 - x4 a - -z f :) x=説明変数リストから除外する変数リストの指定 (dropx=) 図示する説明変数の番号の指定 (no=) ... 説明変数を関連の強さを表す番号により選 択表示します(例: no=1:3, no=1 2 5) 図示するクロス集計レベルの指定(crosslvl=1) ターゲット変数の合計値の表示 (type=) ... type=SUM 指定で平均値の代わりに合計値 を表示します. 分析結果のカテゴリ表示順序の指定 (order=) ... クロス分析結果表における説明変数値の並 び順を指定。(order=/A/D) 値の昇順(ブランク), ターゲット出現率または平均値の昇順(A),ター ゲット出現率または平均値の降順(D) (コマンド実行モードでのみ有効。 GUI実行モ ードでは常にブランク) 変数ラベルと値ラベルを表示しない (nolabel=N) ... 変数ラベルと値ラベルを用いずに変数名、 変数値を用いた結果表を作成。 画面出力のタイトルの指定(title=)(%str,%nrstr,%bquote などの関数で囲んで 指定すること) 百分率の表示フォーマットの指定 (pctf=7.2) 平均値・標準偏差の表示フォーマットの指定 (meanf=best8.) AIC値の表示フォーマットの指定 (aicf=best8.) 差分AIC分析結果表における処理群(DATA)を表す 記号 (d_label=[D]) 差分AIC分析結果表における対照群(Control)を表す記 号 (c_label=[C]) 差分AIC分析結果表における処理群-対照群間の差を 表す記号 (dif_label=[D]-[C]) 言語の選択 (language=JAPANESE) グラフ画面表示言語の選択 (graph_language=ENGLISH) HTML出力ファイル名 (outhtml=dmt_crosstab.html) (コマンド実行モードでのみ有効) HTMLファイル出力ディレクトリの指定 (outpath=) (コマ ンド実行モードでのみ有効) グラフデバイスの指定 (dev=GIF)

9.3.3 パラメータの詳細

表示する説明変数の指定 (x=) 表示したい説明変数名を指定します。このパラメー タを省略すると、全変数が指定されたものとみなさ れます。間に1個以上のスペースを入れて、複数の説 明変数を指定可能です。また、コロン(:)省略指定とハ イフン(-)省略指定と_ALL_特殊指定 も利用可能です が、,ハイフンハイフン(--)省略指定と

NUMERIC,_CHARACTER_ 特殊指定は実行結果 が目的に合致しなくなるため指定しないでください。 (cross=データセットの item1,item2 変数名を参照 して変数名を抽出した_data データセットを作成し、 ここから有効な名前の説明変数名をチェックしてい ます。)

なお、no=パラメータと同時に指定可能です。指定した場合は、crosslvl=パラメータの条件を満たす中で、 x=パラメータとno=パラメータのいずれかの条件を 満たす範囲が選択されます。

また、crosslvl=2 指定の場合、x=パラメータに指定 された変数が item1, item2 のいずれかに該当するク ロス説明変数が抽出されます。

例1: x=age (説明変数1個を指定)

例2:x=age seibetsu (説明変数2個を指定)
例3:cross=a,x=abc: (入力データセットaに含まれるabcで始まる全説明変数を指定)
例4:x=age x1-x5 q: nenshu (説明変数指定方法の複合例)

除外する説明変数の指定 (dropx=)

x=パラメータと共に指定します。x=パラメータに指 定した説明変数の中で分析から除外する説明変数を 指定します。デフォルトは ブランクです。x=パラメ ータと同じ指定方法が使えます。 例:

 x=_all_,dropx=a_: (a_で始まる変数およびター ゲット変数以外のdata=入力データセットの全変数 を説明変数に指定)

表示する説明変数Noの指定 (no=)

cross=データセットの 変数 item_no の値に対応し て表示する範囲をリスト指定します。デフォルトの ブランクはcross=データセットに含まれるすべての 番号の説明変数を表示対象とする意味です。no=パラ メータの指定方法は、番号を表す数字(例 1)、もしく は、範囲を表す 数字-数字(例 1-5) をブランクで区切 って並べて指定します。例えば、以下のような指定 が可能です。

例1:no=1 (最初の説明変数1個のみを指定) 例2:no=157 (説明変数3個を指定) 例3:no=1-7 (1番から7番の連続した範囲を指定) 例4:no=1-710 (1番から7番の連続した範囲と10 番の8個の説明変数を指定)

存在しない番号が指定された場合はエラーになりま す。(cross=データセットの item_no変数値を参照し て"NO"+"item_no変数値"を名前とした変数を持つ _item_no データセットを作成し、ここから有効な名

Data Bring New Insight to Your Business 9 分析画面 ②項目分析 9.3 結果図 (dmt_crossplot)

前の説明変数名をチェックしています。)なお、**x=**パ ラメータと同時に指定可能です。指定した場合は、 両者の条件のいずれかを満たす範囲が選択されます。

クロス集計レベル (crosslvl=1)

説明変数とターゲット値もしくはターゲット変数間 の関連性分析結果(crossIvl=1)、2つの説明変数間の クロス説明変数とターゲット値もしくはターゲット 変数間の関連性分析結果(crossIvl=2)のいずれかを 表示するかを選択します。cross=入力データセット に crossIvl=2(変数K=2)の分析結果が存在するとき は、crossIvl=2を指定することにより、その部分の分 析結果を選択して表示できます。

ターゲット変数の合計値の表示(type=)

数値タイプのターゲット変数の分布を図示するとき、 type=SUMを指定すると、平均値の代わりに合計値の 折れ線表示に変更されます。 例:

%dmt_cross(data=samp_data,y=nenshu,x=nenrei) %dmt_crossplot(type=sum,nolabel=Y)

DMT_CROSS 分析結果: 分析データセット: samp_data, ターゲット: nenshu

				件数	平均值	標準偏差	最小值	最大链
NO	AIC	説明姿数	値					
0		(ANY)	(ALL)	1,445	514.0498	202.7175	102	1278
1	7.401576 NENREI S	NENREI 年龄	20~22	126	494.8254	195.3707	108	1070
			23~25	132	524.4924	215.3209	125	1052
			26~28	122	556.6721	245.1042	161	1278
			29~32	149	516.1544	208 4451	166	1245
			33~36	144	489.8958	197.9444	106	1111
			37~40	144	513.7569	200.249	139	1198
			41~44	169	515.0355	194.371	102	1115
				45~48	150	534.9933	192 5019	149
			49~52	139	492.0576	181.3424	104	1138
			53~58	126	503.3254	188.1139	102	1217
			59~60	44	517.4773	199.0686	126	861

表示タイトル (title=)

画面出力される表にタイトルを指定できます。 タイトルを指定する場合、特殊文字が含まれている 場合は、%bquote関数の中に、%と&を文字として認 識させたい場合は%nstr関数の中に記述してくださ い。タイトルを指定すると、アイテム番号、変数名、 AIC値がグラフの下部に表示されます。

言語(language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。 例:language=ENGLISH

グラフ画面表示言語 (graph_language=ENGLISH)

グラフィック出力画面に表示する既定のタイトルや 軸 ラベル 等に表示 する 言語を指定します。 graph_language=ENGLISH が既定です。※ 現行 WPS ではグラフ上には日本語が表示できませんので、 デフォルトの graph_language=ENGLISH を変更し ないでください。

分析結果のカテゴリ表示順序の指定 (order=)

order=パラメータを指定しない場合、各説明変数のカ テゴリの並びはカテゴリ値の昇順です。

order=A を指定すると、ターゲット値(出現率、平均値、または処理群と対照群間の出現率または平均値の差)の昇順にカテゴリを並べて表示します。 order=D を指定すると、ターゲット値の降順にカテゴリを並べて表示します。

例: %dmt_cross(data=samp_data,y=flg,target=1,x= sei nenshu,crosslvl=2,print=N) %dmt_crossplot(order=A,crosslvl=1,nolabel=Y

,title=%nrstr(%dmt_crossplot(order=A,crosslvl=1,nol abel=Y)))

%dmt_crossplot(order=D,crosslvl=2,nolabel=Y ,title=%nrstr(%dmt_crossplot(order=D,crosslvl=2,nol abel=Y)))

図の赤色の折れ線がカテゴリごとのターゲット出現 率を表します。(赤色の水平な点線は全体平均)

変数ラベルと値ラベルを表示しない (nolabel=N)

変数ラベルと文字変数値に対する値ラベルのかわり に、本来の変数名、変数値の表示に変わります。元 の値を知りたい場合や日本語ラベルを表示したく無 い場合に指定します。

9.3.4 コマンド実行モードで有効なパラメータの詳細

fmt=_fmt

DMT_CROSSマクロを実行すると出力されるAIC集 計表の説明変数のラベルと文字説明変数カテゴリ値 のフォーマット定義データセットを入力として指定 します。デフォルトは WORK._fmt です。

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。 例:%dmt_cross(help)

std_mod_min_n=9

処理群と対照群間のターゲットの差を分析する場合 に、データ件数の少ないターゲット出現率や平均値 の標準偏差を修正する基準を与えるパラメータです。 そもそも施策実施群の顧客属性と施策非実施群の顧 客属性はアンバランスとなることが多いと考えられ ます。そのため、同一説明変数カテゴリに該当する データ件数が、処理群と対照群の間で非常にアンバ ランスとなる場合が起こりえます。そのとき、デー タ件数が少ない群の方のカテゴリではターゲット出 現率や平均値はバラツキ(標準偏差)が大きくなる と考えられますが、計算上の標準偏差は0または0に 近い不自然な値が得られる場合があります。このよ うな事態を避けるため、std_mod_min_n=パラメータ は、指定の値以下のデータ件数から計算されるカテ ゴリ内のターゲット出現率または目的変数の平均値 の標準偏差の計算値が全データの標準偏差より小さ い場合に全データの標準偏差に置き換えるよう指示 します。

9.3.5 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_crossplot.html

分析結果を保存するHTML出力ファイル名を指定し ます。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

9.3.6 実行例

(1)target=パラメータを指定し、ターゲット出現率の分布 との関連を分析した場合

ターゲットの出現率と各説明変数の統計的関連性を AIC 値で評価した分析結果図を出力します。

%dmt_cross(data=samp_data,y=flg,target=1,x=sei nenshu,crosslvl=2,print=N) %dmt_crossplot(nolabel=Y)

Data Bring New Insight to Your Business

グラフのタイトルには、分析結果の番号(#)、説明変 数名とラベル、AIC 値が表示されます。横軸は各説明 変数のカテゴリ、縦軸はカテゴリに含まれるターゲ ット値の再現率(縦棒グラフ表示)と出現率(丸印 の折れ線グラフ表示)を表しています。点線の水平 線はターゲット出現率の全体平均値を表します。

標準では crosslvl=1 の条件に合致する分析結果のみ を表示します。

なお、nolabel=Y オプションは変数ラベルやデータラ ベルに付けられた日本語の表示を行わないようにす るためです。

crosslvl=2の分析結果を図示するには、crosslvl=2パ ラメータを指定します。

%dmt_crossplot(crosslvl=2,nolabel=Y)

グラフのタイトルには分析結果の番号(#)、説明変数 名1とそのラベル、"*" 記号、説明変数名2とその ラベル、AIC 値が表示されます。(変数ラベルは nolabel=Y指定により表示されません)

横軸には説明変数 1 のカテゴリ、"*" 記号、説明変数 2 のカテゴリが表示されます。縦軸はカテゴリに 含まれるターゲット値の再現率(縦棒グラフ表示) と出現率(丸印の折れ線グラフ表示)、そして全体平 均出現率(水平な点線)が表示されています。

(2)target=パラメータを指定せず、ターゲット変数の分布

との関連を分析した場合

例:%dmt_cross(data=samp_data,y=nenshu,x=nenr ei,print=N) %dmt_crossplot(nolabel=Y)

Means for each Category (#1) NENREI AIC=7.401576

グラフのタイトルは分析結果の番号(#)、説明変数名 とそのラベル、AIC 値が表示されます。

横軸は説明変数カテゴリ値とフォーマット値が表示 されます。縦軸はカテゴリ該当件数(棒グラフ表示) とターゲット変数の平均値(丸印のドットと折れ線 表示)が表示されます。なお、水平な点線は目的変 数の全体平均値を表します。

type=SUM パラメータを指定すると、平均値ではなく、 カテゴリ別合計値の表示に変わります。

(3)control=パラメータとtarget=パラメータを指定し、処 理群と対照群間のターゲット出現率の差を分析した場合

例:%dmt_cross(data=samp_data(where=(DM="1")) ,control=samp_data(where=(DM="0")) ,y=flg,target=1,x=sei nenshu,print=N) %dmt_crossplot(x=NENSHU,nolabel=Y)

グラフのタイトルは分析結果の番号(#)、説明変数名 とそのラベル、AIC 値が表示されます。 横軸は説明変数カテゴリ値とフォーマット値が表示

されます。縦軸は個別 AIC 値の符号を逆にした値 (棒 グラフ表示) と処理群と対照群のターゲット出現率

の差(丸印のドットと折れ線表示)が表示されます。 なお、水平な点線は処理群と対照群のターゲット出 現率の全体平均値の差を表します。

棒グラフの値は個別 AIC 値の符号を逆転させた値で す。したがって、棒の値が0より大きいカテゴリは 処理群と対照群の出現率の差が有意であることを意 味し、上方向に高いほど有意とみなされます。上図 の場合、年収が553-602の範囲のカテゴリで処理群 と対照群の出現率の差は処理群の方が5%ポイント ほど低くなっていますが、この差は有意です。それ 以外のカテゴリでは処理群と対照群の出現率の差は 有意ではありません。変数全体のAIC 値は13.6 とな っており、変数 NENSHU のカテゴリ間の処理群と対 照群の出現率の差のばらつきは、全体として有意で は無いという結論です。

(4) control=パラメータを指定し、target=パラメータを 指定せず、処理群と対照群間のターゲット変数の平均 値の差を分析した場合

例:%dmt_cross(data=samp_data(where=(DM="1")) ,control=samp_data(where=(DM="0")) ,y=kingaku,x=sei nenshu,print=N) %dmt_crossplot(x=NENSHU,order=D,d_label='TRT MNT',c_label='CNTRL',nolabel=Y)

グラフのタイトルは分析結果の番号(#)、説明変数名 とそのラベル、AIC 値が表示されます。

横軸は説明変数カテゴリ値とフォーマット値が表示 されます。縦軸は個別 AIC 値の符号を逆にした値(棒 グラフ表示)と処理群と対照群のターゲット平均値 の差(丸印のドットと折れ線表示)が表示されます。 なお、水平な点線は処理群と対照群の各全体平均値 の差を表します。

order=D オプションを指定しているため、ターゲット 平均値の差の降順に横軸のカテゴリが並べられてい ます。また、d_label=,c_label=オプションの指定によ って処理群、対照群それぞれを意味する表示テキス トがデフォルトから変更されています。

棒グラフの値は個別 AIC 値の符号を逆転させた値で す。したがって、棒の値が0より大きいカテゴリは 処理群と対照群の平均値の差が有意であることを意 味し、上方向に高いほど有意とみなされます。上図 の場合、年収が737-834、欠損、553-602の3つのカ テゴリで処理群と対照群の平均値の差は有意となっ ています。変数全体の AIC 値は-4.89 となっており、 変数 NENSHU のカテゴリ間の処理群と対照群の平均 値の差のばらつきは、全体として有意という結論で す。

9.3.7 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_AIC \$_cat _cat \$_item \$_ITEMC \$_ITMCAT \$_VARTYP

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

_errormsg

9.4 結果管理

クロス分析結果ロード 指定画面									
クロス分析結果の管理									
名前	作成日時	光							
_cross2 _cross	2016/08/15 23:55 2016/07/29 23:27	[CROSS] dmt_cross(data=data_SAMP_DATA(where=(DM="1")),labeldat=data_SAMP_DA [CROSS] dmt_cross(data=data_SAMP_DATA(where=(DM="1")),labeldat=data_SAMP_DA							
	表示	名前の変更 削除 戻る							

9.4.1 概要

「クロス分析」画面で作成したクロス分析結果データセットを操作(表示・名前の変更・削除)します。 この機能はマクロモジュールには含まれていません。 GUI実行モードでのみ指定可能です。

メモ欄の最初の鍵カッコは以下の画面で作成された ことを表します。

[CROSS] ... クロス分析

続いてデータを作成したときに実行したプログラム が記述されています。

9.4.2 操作方法

名前			
作成日時	, , ,		
		۶Ł	

リストの上にあるバーをクリックすると、データセ ットリストを各項目の昇順・または降順で並べ替え ることができます。

操作したいクロス分析結果データ名をクリックする と、操作ボタンが表示されますので、表示・名前の 変更・削除の操作を行います。

表示	分析結果データの内容を表示し	ます
	確認	
	? 保存クロス分析結果データを表示しますか?	
	(オレ)(Y) ししええ(N)	

名前の変更 データの名前とメモ内容を確認・変更しま

す。 クロス分析結果データリネーム 指定画面 ▲ クロス分析結果の名前変更 名前 座であればメモを書き込んでくだをい 「CROSS] dmt.cross(data-data SAMP_DATA(where=
(DM="1")).labeldat-data SAMP_DATA(where=
(

名前は半角英数字で32文字以内に設定してください。 (先頭はアルファベットまたは_(アンダーバー)) なお、<u>名前の変更は、元の名前を参照している他の</u> <u>項目(モデル作成画面の入力パラメータ値など)と</u> <u>は自動連動しません。</u>そのため、再指定が必要にな るなどの影響があります。

削除 データを削除します。							
確認	×						
? 保存クロス分析結果 _cross2 を削除してよろしいですか?							
(まい(Y) いいえ(N)							

削除すると、元に戻せません。

(TIPS) 多数のデータセットをまとめて削除したい場 合は、「設定画面」の「分析ディレクトリ」の下の「データセ ットディレクトリ」「表示」ボタンを押し、起動する Windowsエクスプローラで行うと便利です。削除し たいデータセット名が書かれたディレクトリをすべ て同時選択してから削除します。

10. 分析画面 ③モデル作成表示

デシジョンツリーモデルを作成し、モデルの内容を表示します。

10.1 モデル作成(dmt_tree)

1T_TREE	E 指定画面			3
	デシ	ジョンツリーモデル作用	兌	入力指定のリセット
入力データ	? (*data=)	表示where条件	v	
対照データ	! (control=)	… 表示 where条件	···· · · · · · · · · · · · · · · · · ·	
入力検証式	データ (testdata=)	表示 where条件	···· V	
対照検証決	データ (testcontrol=)	… 表示 where条件	···· · ·	
交差検証	(testdata=CV) 🛛 🔿 Y 💿	N フォルド(分割)数 🚽 乱数シード値	個々の交差検証ツ	リーを保存 〇 Y 🖲 N
ターゲット変	E裝t (*y=)	ターゲット値(target=)		
説明変数	(*x=)		^	sort btn
除外する説				
(d	tropx=)		~	
順序尺度調	説明変数 (ordinalx=)		<u> </u>	
循環尺度調	说明変数 (cyclicx=)		<u> </u>	
最小ノード	件数 (minont=) ● AUTO	○ ノード件数	×	
最大分岐1	レベル (maxivi=) リー・ルカ	UVU〜モデル (outmodel=) tree	表示	
「生成コード	s)		9011	
			~	
	表示するテータ特徴の上限		の表示としていた。またの表示という。	果 前回 戻る
1091				
				<u>^</u>
				\sim

10.1.1 概要

デシジョンツリーモデル作成(DMT_TEEE)はデシジョンツリー(決定木)モデルを作成するプログラムです。以下の特徴があります。

- (1) 分類木モデル、回帰木モデルの両方に対応
- (2) アップリフトモデルの作成
- (3) 交差検証法によるモデル検証
- (4) 最大**2000**の説明変数の指定が可能
- (5) 個々の説明変数に尺度指定(名義・順序・

循環)が可能

- (6) AIC基準による説明変数選択
- (7) 動的なノード最小必要件数の指定が可能
- (8) モデルの表示、検証、新規データへのモデ ルあてはめ、収益計算等さまざまな機能が 利用可能
- (9) SAS言語で開発されていること

(1) 分類木もしくは回帰木の作成

DMT_TEEEはターゲット出現率を予測する分類木モ デル、ターゲット変数の値を予測する回帰木モデル、

Data Bring New Insight to Your Business 10

いずれにも対応しています。

(2) アップリフトモデル
 本バージョンから処理群(data=入力データ)と対照
 群(control=入力データ)間のターゲット出現率また
 はターゲット平均値の差を予測するツリーモデル
 (アップリフトモデル)の作成が可能です。

(3) 交差検証法によるモデル検証 本バージョンからモデル作成データと別に用意した 検証用データを用いたモデル検証の他、モデル作成 データのみを用いた交差検証法によるモデル検証も 可能になりました。(GUI実行モードではtestdata=CV 指定、コマンド実行モードでは DMT_CVTREEマク ロの実行)

交差検証の流れは以下のとおりです。

(ステップ**1**:モデル作成) まず、最初に分析データ全部を使ったモデル (outmodel=_TREE)を作成します。

(ステップ2:交差検証)

次に分析データセットをいくつかの同じサンプルサ イズのデータセットにランダムに分割します。分割 数を5とすると、分割されたデータには1番から5番ま での番号を順につけておきます。

この中から、モデル作成用と検証用データを順に入 れ替えながら、5個のモデルの作成と検証データへの モデル適用を行います。最初は、検証用に1番、モデ ル作成用に2番から5番までを併合したデータを使い、 2回目は、検証用に2番、モデル作成用に1番と3番か ら5番までの併合データ、...、最後は、検証用に5番、 モデル作成用に1番から4番までの併合データを使い ます。

これらのモデルは、ステップ1で作成したモデルと同 じ方法(指定する説明変数、使用する分割基準、ノ ード終端条件など)で作成します。結果として、相 互に微妙に異なる5個の個々の交差検証モデル

 (_TREE_CV1~_TREE_CV5)と、元の分析データの各オブザベーションに対して、いずれかの個々の 交差検証モデルの予測値が付与された検証結果データ(_TREE_CVSC)が得られます。

(ステップ3:予測結果の整理)

検証結果データ(_TREE_CVSC)の交差検証モデル 予測値は、集計することにより、元のモデル(_TREE) の予測誤差の評価に用いることができます。

DMT_CVTREEでは、交差検証モデル予測値を元のモ デル(_TREE)のノード(中間および終端)別の平 均値に集計する方法で、検証データに対するモデル 形式データセット(_TREE_CV)として整理してい ます。テストデータが与えられた場合のモデル評価 方法がすべて適用できます。 以上のように、DMT_CVTREEは交差検証結果として、 個々の交差検証モデル(_TREE_CV1~_TREE_CV5)、 交差検証予測値(_TREE_CVSC)、検証結果モデル 形式データセット(_TREE_CV)3種類のデータセッ トを出力します。

特に、検証結果モデル形式データセット

 (_TREE_CV) は、あたかも、元のツリーモデルの 分割規則を、他の新しいテストデータに適用したと きに得られるものと同じ形式ですので、
 DMT_GAINCHART, DMT_COMPAREPLOT,
 DMT_UPLIFTCHARTなどのモデル評価方法がすべて適用できます。

なお、ステップ2の分析データセットの分割数は、本 アプリケーションではデフォルトを5(2~20の範囲 で有効)に設定しています。

(4) 最大 2000 の説明変数の指定が可能 指定できる説明変数の数は最大2000までとしていま す。ただし、コンピュータ資源の制約からそれ以下 の説明変数しか用いることができない場合もあり得 ます。説明変数の指定には-(ハイフン)、--(ハイフ ンハイフン)、:(コロン)、_ALL_(全変数)、

NUMERIC(全数値タイプ変数)、_CHARACTER_ (全文字タイプ変数)の各省略形式およびそれらの 混合指定が可能です。

(5) 個々の説明変数に尺度指定(名義・順序・循 環)が可能

文字タイプ説明変数は名義尺度(デフォルト)、順序 尺度(ordinalx=パラメータに指定)、循環尺度

(cyclicx=パラメータに指定)のいずれかに設定可能 です。また、数値タイプ説明変数は順序尺度

(ordinalx=パラメータに指定)、循環尺度(cyclicx= パラメータに指定)のいずれかに設定可能です。数 値タイプ説明変数のデフォルト尺度は、splitpts=パラ メータの値によって変更できます。

なお、順序尺度とはカテゴリの値の間に順序関係が あるとみなす尺度(例変数:"A優"、"B良"、"C可 ")であり、循環尺度とは順序関係にあるカテゴリの 最初と最後のカテゴリが隣り合っているとみなす尺 度(例:"A朝"、"B昼"、"C夜")です。名義尺度は カテゴリ間に何ら順序関係が無いとする尺度(例:" 東京"、"大阪"、"名古屋"、"福岡")です。

尺度設定と関係するパラメータは以下のとおりです。 個々の文字変数は名義、順序、循環いずれかの尺度 指定、数値変数は順序もしくは循環のいずれかの尺 度指定が可能です。

Data Bring New Insight to Your Business

当田亦物カノプ	splitpts=	パラメータに	設定される兄庭	
武明を奴ワイノ	パラメータの値	ordinalx=	cyclicx=	設定される尺度
		×	×	名義(nominal)
文字	無関係	0	×	順序(ordinal)
		×	0	循環(cyclic)
	1	×	×	順序(ordinal)
粉店		×	0	循環(cyclic)
<u></u> 叙恒		×	×	循環(cyclic)
	^ (よだは2)	0	×	順序(ordinal)
			注:×は無指定	を意味します

(6) AIC基準による説明変数選択

各ノードの分岐に用いる説明変数の選択基準として AIC基準を採用し、その後カテゴリ併合を行っていま す。(カテゴリ併合を含めて変数選択を一度に検索す るより効率的)ただし、ノード最小件数条件を満た すカテゴリ併合法が見つからない場合は、次に説明 力が高い説明変数を順次探索しています。 採用された説明変数のカテゴリ値の子ノードへの振 り分け方法はエントロピー基準(分類木)、群内平方 和最小基準(回帰木)、AIC基準(アップリフトモデ ル)によるカテゴリ併合法を採用しています。

(7)動的なノード最小必要件数の指定が可能 分類木モデルの場合、各ノードにおけるターゲット 予測出現率pの統計的誤差(真の出現率からの観測出 現率の誤差)はそのノードに含まれる件数Nの平方根 に反比例します。同様に、回帰木モデルの場合も、 各ノードにおけるターゲット予測値yの統計的誤差 (真の値と観測値の誤差)もそのノードに含まれる 件数Nの平方根に反比例します。

この性質を利用して、すべてのノードが予測値の大 きさに比例した許容範囲内の誤差に収まることが期 待できるモデルを構築する機能を実現しています

(mincnt=AUTO指定(デフォルト))。ターゲット出 現率pまたはターゲット予測値yのノードがpもしく はyの一定倍数(err_rate=パラメータ)以内の上下許 容誤差範囲に収まるだけの件数Nを持っているかど うかをチェックし、これを満たす最適のノード分岐 説明変数カテゴリを探索します。この機能を用いて モデル構築用データセットへ過剰適合したモデルの 作成を自動的に防ぐことが期待できます。 なお、アップリフトモデルでは、処理群、対照群の 両方においてこの条件を満たすノード分岐を行うよ う制御しています。

(8) モデルの表示、検証、新規データへのモデル あてはめ、収益計算等さまざまな機能が利用可能 DMT_TREE 実行結果は作成したモデルをデータセットに出力します。このモデルデータセットを入力 として、モデルの表示(DMT_TREETAB, DMT_NODETAB)、モデルの精度検証

(DMT_GAINCHART, DMT_COMPAREPLOT, DMT_CORRECTTAB)、新規データへのモデルあて はめ (DMT_TREESCORE)、収益計算

(DMT_GAINCHART) などのDMTデシジョンツリー アプリケーションに備わっているさまざまな機能を 続けて実行することができます。 (9) **SAS**言語で開発されていること

本アプリケーションは全部がSAS言語で開発されて おり、コマンド実行モードでは、各マクロモジュー ルは、SASプログラムによるユーザアプリケーショ ンの中に自由に組み込むことができます。分析結果 の大部分はデータセット出力されますので、現バー ジョンのDMTデシジョンツリーアプリケーションが サポートしていないレポート表示やグラフ表示など も、ユーザプログラミングにより作成することが可 能です。

10.1.2 指定方法

(コマンド実行モードでの指定)

%dmt_tree(help

,data=,control=,y=,target=,x= ,dropx=&y,ordinalx=,cyclicx=,outmodel=_tree ,mincnt=AUTO,err_rate=0.1,maxlvl=5,lastcatm=N ,splitpts=2,nomergen=STURGES,maxcatn=1000 ,precat=Y,std_mod_min_n=9,keep_node_data=N ,node_data_prefix= ,language=JAPANESE)

コマンド実行モードで交差検証機能つきデシジョン ツリーモデル作成を行う場合は、dmt_treeマクロでは なく、以下のdmt_cvtreeマクロを指定します。

%dmt_cvtree(help,fold=5,seed=1

,data=,control=,y=,target=,x= ,dropx=&y,ordinalx=,cyclicx=,outmodel=_tree ,mincnt=AUTO,err_rate=0.1,maxlvl=5,lastcatm=N ,splitpts=2,nomergen=STURGES,maxcatn=1000 ,precat=Y,std_mod_min_n=9,keep_node_data=N ,node_data_prefix= ,language=JAPANESE)

dmt_cvtreeマクロはfold=パラメータとseed=パラメ ータが追加指定できる点だけがdmt_treeマクロとの 相違点です。

(GUI実行モードでの変更点)

- ・helpパラメータは指定不可。
- ・以下のアイテムが入力可能。
- 入力検証データ(testdata=)

・testdata=CV に Y を指定することにより交差検証 モデルが作成可能。

・実行結果の表示が可能

(ツリー分岐図、ゲインチャート(分類木の場合の み)、アップリフトチャート(アップリフトモデルの み)、比較プロットの表示を選択できます)

・seed=, err_rate=, lastcatm=, splitpts=, nomergen=, maxcatn=, precat= はオプション画面で指定します。

(必須パラメータ)

以下の5個のパラメータの内、data=, y=, x= の3個は

Data Bring New Insight to Your Business

常に必須指定です。control=パラメータは、施策実施 効果を分析するアップリフトモデルを作成する場合 に対照群データの指定に用います。また、target=パ ラメータは、ターゲット値の出現率(または処理群 と対照群間のターゲット出現率の差)の大小を分岐 基準とするツリーモデルを作成する場合に指定しな ければなりません。

(オプションパラメータ)

以下の**18**個のパラメータは任意指定です。(=の右辺の値はデフォルト値を表しています)

help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効) 出力モデルデータセット名の指定 (outmodel=_tree) ノード最小必要件数の指定 (mincnt=AUTO) ... AUTOまたは正の整数を指定 推計値の標準誤差に対する許容誤差率 (err_rate=0.1) ... 0超1未満の値を指定 最大分岐レベル (maxlvl=5) ... 1~20 までの正の整数を指定 最終カテゴリ併合 (lastcatm=N) ... 数値説明変数カテゴライズにおいて、最後の カテゴラリ件数が少ない場合1つ前のカテゴリ に併合するか否かの選択(Y/N). 非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES) ... 指定の値以下の値の種類数を持つ数値説明 変数の個々の値を分析に用いる.(デフォルトは スタージェスの式の値) 除外する説明変数 (dropx=&y) ... x=説明変数リストから除外する変数リストの 指定 数値タイプ説明変数の最大しきい値数 (splitpts=2) ... 1または2(デフォルト)。 順序尺度説明変数の指定 (ordinalx=) 循環尺度説明変数の指定 (cyclicx=) 分析に用いる文字タイプ説明変数の最大カテゴリ 数(maxcatn=1000) ... 2~5000の範囲で指定可能 あらかじめ数値変数をカテゴライズ(precat=Y) ... 分析開始時にあらかじめ数値タイプ説明変 数をまとめてカテゴライズを行うか否かを選択 言語の選択 (language=JAPANESE)

交差検証実行時のデータ分割数 (fold=5)

交差検証実行時のデータ分割に用いる乱数シードの 指定 (seed=1) 全体の標準偏差を用いる最小カテゴリ件数の指定 (std_mod_min_n=9) (コマンド実行モードでの

み有効) WORKライブラリにノードデータセットを残す (keep_node_data=N) (コマンド実行モードで

のみ有効) WORKライブラリに残すノードデータセットの接頭 辞をつける (node_data_prefix=)(コマンド実行モー ドでのみ有効)

(以下はGUI実行モードでのみ指定可能なオプション)

入力検証データ (testdata=) … モデル検証用データを指定します。 testdata=CV に Y を指定すると、交差検証を行 います。

10.1.3 パラメータの詳細

入力データ (data=) 入力データセット名を指定します。このパラメータ は省略できません。control=パラメータも指定する場 合は、data=パラメータには処理群(施策実施群)を 表す入力データセットを指定します。 例:data=a, data=a(where=(DM="1"))

入力対照データ (control=) 処理群と対照群間の応答差を分析するときに、対照 群を表す入力データセットを指定します。 例: control=b, contol=a(where=(DM="0"))

ターゲット変数 (y=) ターゲット変数名を指定します。 このパラメータは 省略できません。 例: y=flag, y=sales_amount

ターゲット値 (target=)

ターゲット値を指定します。このパラメータは文字 タイプターゲット変数の特定の値、もしくは数値タ イプターゲット変数の特定の値もしくは範囲をター ゲット値とみなして、その出現率(または実施群と 非実施群間の出現率の差)を分析したい場合は省略 できません。(数値タイプターゲット変数の値そのも のの分布の違いを分析したい場合は指定してはいけ ません。)

ターゲット変数が文字タイプの場合は1種類の値を 指定します。特殊な文字(+,-など)を含まない限り 引用符で囲む必要はありません。ターゲット変数が 数値タイプの場合は1種類の値、もしくはあるしきい 値を境とした「以上」、「以下」、「超」、「未満」のい ずれかの範囲を指定可能です。数値変数タイプで範 囲を指定する場合は引用符で囲んではいけません。

 例1: y=flag,target=A (ターゲット変数が文字タ イプ変数で、その値"A"をターゲットに指定する場合)
 例2: y=sales,target=1000 (ターゲット変数が数 値タイプで、その値1000をターゲットに指定する場 合)

例3: y=sales,target=>1000 (ターゲット変数が 数値タイプで、その値1000超をターゲットに指定す る場合)

例4: y=sales,target=>=1000 (ターゲット変数が 数値タイプで、その値1000以上をターゲットに指定 する場合。 target==>1000と指定してもかまいませ ん。)

例5: y=sales,target=<1000 (ターゲット変数が 数値タイプで、その値1000未満をターゲットに指定 する場合)

例6: y=sales,target=<=1000 (ターゲット変数が数値タイプで、その値1000以下をターゲットに指定する場合。 target==<1000と指定してもかまいません。)

注:文字タイプ変数のターゲット値は、大文字、小 文字が区別される点に注意してください。(変数名は 大文字・小文字の区別はありません。)

説明変数 (x=)

説明変数を指定します。このパラメータは省略できません。間に1個以上のスペースを入れて、複数の説明変数を指定可能です。また、3通りの省略指定(-,--,:)と3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) も利用可 能です。

例1:x=age (説明変数1個を指定)

例2:x=age seibetsu (説明変数2個を指定)

例3: x=abc1-abc100 (変数名がabcで始まり1から 100までの数字で終わる100個の説明変数を指定)

例4: data=a,x=nenrei--jukyo (入力データセットa に含まれる変数を定義された変数順で検索して、

nenreiから**jukyo**の範囲に含まれる全変数を説明変数 に指定)

例5: data=a,x=abc: (入力データセットaに含まれ るabcで始まる全説明変数を指定)

例6:x=age x1-x5 q: time--yz1 nenshu (説明変数 指定方法の複合例)

例7; x=_all_ (全変数)

例8; x=_character_ age (全文字タイプ変数とage)

除外する説明変数 (dropx=&y)

x=パラメータと組み合わせて用い、**x**=パラメータに 指定した説明変数の中で分析から除外する説明変数 を指定します。

デフォルトは dropx=&y すなはち、ターゲット変数 が除外されます。なお、dropx=パラメータに何か指 定すると、常にターゲット変数も除外変数に加わり ます。x=パラメータにターゲット変数を指定し、 dropx=,と明示的にブランク指定を行った場合のみ ターゲット変数は除外されずに分析に加わることに なります。 **x**=パラメータと同じ指定方法が使えます。

例:

x=_all_,dropx=a_: (a_で始まる変数およびター ゲット変数以外のdata=入力データセットの全変数 を説明変数に指定)

数値タイプ説明変数の最大しきい値数 (splitpts=2)

数値説明変数が分岐候補説明変数に選択された場合 のカテゴリ併合方法を指定します。1または2を指定 できます。(2がデフォルト)。1を指定するとk個のカ テゴリを2つに分ける(k-1)通りの併合パターンのみ を計算し、採用された場合あるしきい値の前後に分 かれることになります。(すべての数値説明変数がデ フォルトで順序尺度とみなされます)2(デフォルト) の場合は、2つに分けるパターンと3つに分けて最初 と最後を一緒にするパターンの両方を計算し、最適 な併合パターンを探索します.(すべての数値説明変 数がデフォルトで循環尺度とみなされます)

順序尺度説明変数 (ordinalx=)

カテゴリ併合の際に順序制約を付けたい説明変数名 を指定します。間に1個以上のスペースを入れて、複 数の説明変数を指定可能です。また、3通りの省略指 定(-,--,:)と3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) も利用可 能です。

x=パラメータと同じ指定方法が使えます。

なお、文字タイプ説明変数の尺度はデフォルトで名 義尺度、数値タイプ説明変数の尺度は、splitpts=1を 指定した場合は順序尺度、splitpts=2を指定した場合 は循環尺度がデフォルトです。デフォルト以外の尺 度を指定したい文字タイプ説明変数と数値タイプ説 明変数を指定します。

循環尺度説明変数 (cyclicx=)

カテゴリ併合の際に循環制約を付けたい説明変数名 を指定します。間に1個以上のスペースを入れて、複 数の説明変数を指定可能です。また、3通りの省略指 定(-,--,:)と3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) も利用可 能です。

x=パラメータと同じ指定方法が使えます。

なお、文字タイプ説明変数の尺度はデフォルトで名 義尺度、数値タイプ説明変数の尺度はデフォルトで、 splitpts=1の場合は順序尺度、splitpts=2の場合はで循 環尺度です。デフォルト以外の尺度を指定したい文 字タイプ説明変数と数値タイプ説明変数を指定しま す。

最小ノード件数 (mincnt=AUTO)

生成されるノードの最小件数条件を指定します。 AUTO または 正の整数を指定します。指定が無い場 合は AUTO を指定したものとみなされます。

(分類木モデルでAUTO(デフォルト)を指定した場 合)

生成されるノードの該当件数をN、ターゲット出現率 をp、許容誤差率をerr_rate(ERR_RATE=パラメータ で指定します)とすると、以下の条件を満たすノー ドのみを生成します。

SQRT{p*(1-p)/N}<=err_rate*p

この式の左辺は、N個の抽出データ上で観測されたタ ーゲット出現率pを母集団における真のターゲット 出現率の推計値とした場合の標準誤差を表していま す。この標準誤差が右辺の観測比率pのerr_rate倍以 内に収まるような件数N以上のオブザベーションを 持つ条件がノードに課せられます。

上式をNについて解くと、

$N \ge p^{(1-p)}/(err_rate^p)^{(err_rate^p)}$

となります。mincnt=AUTO 指定を行うと、ノード必要件数は固定的ではなく、ノードごとのターゲット 出現率に応じた一定の誤差許容率を満たすノード必 要件数を動的に設定します。

(回帰木モデルでAUTO(デフォルト)を指定した場 合)

生成されるノードの該当件数をN、ターゲット平均値 と標準偏差をそれぞれm,s、許容誤差率をerr_rate

(ERR_RATE=パラメータで指定します)とすると、 以下の条件を満たすノードのみを生成します。

s/SQRT(N)<=err_rate*m

この式の左辺は、N個の抽出データ上で観測されたタ ーゲット平均値の標準誤差を表しています。この標 準誤差が右辺の観測平均値mのerr_rate倍以内に収ま るような件数N以上のオブザベーションを持つ条件 がノードに課せられます。

上式をNについて解くと、

N>=s*s/(err_rate*err_rate*m*m)

となります。

しかし、上式では、**s=0**となるノードは **N>=0**となってしまうので、

$M \ge max(N,OYA_N/10,10)$

という条件を満たすM をノード必要件数として設定 しています。ただし、Nは上記不等式が等式のときの N、OYA_Nは親ノード件数を表します。

mincnt=AUTO 指定を行うと、ノード必要件数は固定 的ではなく、ノードごとのターゲット出現率または ターゲット変数平均値に応じた一定の誤差許容率を 満たすノード必要件数を動的に設定します。

なお、control=パラメータを指定した場合(アップリフトモデル)では、data=処理群データセット、control=対照群データセットともに、上記条件を満たす要件が課せられます。

(任意の正の整数を指定した場合)

この場合は、各ノードの最小必要件数は固定的になり、分岐後の2つの子ノード件数が共に指定の件数条件を満たすノードのみ生成されます。

推計値の標準誤差に対する許容誤差 (err_rate=0.1)

err_rateは mincnt=AUTO 指定の場合に有効です。 0<err_rate<1 の範囲で指定可能です。1に近い値を指 定することは、分類木モデルでは許容する誤差範囲 (標準誤差)を予測値(0から1の範囲であることに 注意)と同じ程度に設定することを意味しますので、 予測値のブレが非常に大きなモデルが出来てしまう 危険性が高くなります。逆に0に近い値を指定するこ とは、相対的に誤差が小さいノードを生成すること につながりますが、ターゲット出現率の値が0または 1に近いノードは非常に多くのノード件数が必要と なりますので、そのようなノードは生成されにくく なります。

回帰木モデルの場合も平均値の標準誤差が平均値の err_rate 倍に収まるために必要な件数を計算して mincntの値を動的に決定します。

入力データセットの件数があまり豊富で無い場合は、 このパラメータ値を大きくするか、mincnt=指定に定 数値を指定します。

最大分岐レベル (maxlvl=5)

ツリーの最大分岐階層数を指定します。デフォルト は5としていますが、1から最大20までの整数値を指 定可能です。(ただし、コンピュータ資源不足などの 理由により指定の最大分岐階層までモデル生成でで きない場合があり得ます。)モデル生成プロセスは、 すべてのノードがこの条件に達するか、mincnt=パラ メータ条件を満たす子ノードをそれ以上作成できな い場合に終了します。maxlvl=の値をどう指定すれば 良いかに関して、mincnt=パラメータのような統計的 根拠はありません。最も複雑なルールがこの指定値 の数の説明変数の複合によって決定される可能性が あること、また生成されるツリーモデルに含まれる ルール数(終端セグメント数)が2のmaxlvl乗を超え ることはないこと、これらのことと、作成するツリ ーモデルの用途を考慮してmaxlvlの値を調整してく ださい。

出カツリーモデル (outmodel=_tree)

生成されたツリーモデルを出力するデータセットに 名前をつけます。

入力検証データの指定 (testdata=)

モデル検証用データを指定します。このパラメータ

Data Bring New Insight to Your Business

はGUI実行モードでのみ指定可能です。指定された場 合は、「結果表示」ボタンを押した際に作成したモデ ルが検証データに適用され、ツリー分岐表、ゲイン チャート、アップリフトチャートの表示に用いられ ます。また、比較プロットは検証データの指定が無 いと表示されません。

最終カテゴリ併合 (lastcatm=N)

数値タイプ説明変数のカテゴライズ方法に関して、 最後のカテゴリを最後から2番目のカテゴリに併合 するか否かを指定します。デフォルトはN(併合しな い)です。

一般にタイが存在する数値変数(たとえば年齢)の 場合、カテゴライズ結果は最後のカテゴリのみ他の カテゴリより件数がかなり少なくなる可能性があり ます。そのため最後のカテゴリを1つ前のカテゴリと 併合する方がモデルの安定性が高まる場合がありま す。

あらかじめ数値変数をカテゴライズ (precat=Y)

分析開始時にあらかじめ1度だけすべての数値タイ プ説明変数をまとめてカテゴライズする(Y)か否(N) かを選択します。precat=Y がデフォルト。 precat=N を指定すると、ノード分割を行うたびに数 値説明変数のカテゴライズが行われます。precat=N を指定するとモデルの精度が良くなる可能性があり ますが、相対的に実行時間が増加します。

非併合数値タイプ説明変数最大カテゴリ数 (nomergen=STURGES)

個々の数値タイプ説明変数のカテゴライス方法に関 して、欠損値を除いた値の種類数がこの値以下の場 合、その数値説明変数は個々の値をカテゴリとみな すように指定します。デフォルトはスタージェスの 公式で計算された値です。

CEIL(1+log2(N))

ただし、CEILは整数値への切り上げ関数、log2は2を 底とする対数関数、Nは欠損値を除くデータ件数を表 します。

分析に用いる文字タイプ説明変数の最大カテゴリ 数 (maxcatn=1000)

このパラメータは文字タイプ変数が単なるオブザベ ーション識別変数であって分析対象では無いとみな すためのパラメータです。デフォルトは1000です。 文字タイプ説明変数のカテゴリ数が指定の数を超え る場合、その文字タイプ説明変数は分析対象から除 外されます。2~5000の範囲で指定可能です。

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

10.1.4 交差検証モデルのパラメータ

以下の指定を行うと、作成するツリーモデルの検証 を行う交差検証モデルを作成します

(GUI実行モード)

「交差検証 (testdata=CV)」の Y にチェックを入れ て以下のオプションを指定します。

フォルド(分割)数 (fold=5)

分析データをランダムに指定の数のグループに分割 し、同数の交差検証モデルを作成します。fold=2~20 の範囲の整数で指定できます。

乱数シード値 (seed=1)

交差検証実行時のデータ分割に用いる乱数シード値 を指定します。正の整数値を指定すると、同じシー ド値に対して常に同じコンピュータ乱数系列が生成 されます。一方、値0を指定すると、生成されるコン ピュータ乱数系列は実行するたびに異なるものとな ります。分析結果の再現性を求める場合は、シード 値は0以外に指定してください。

個々の交差検証ツリーを保存 (Y/N)

交差検証実行時に作成されるfold=パラメータ指定数 個の個々の交差検証用ツリーモデルをモデル管理画 面に登録して参照可能とするか否かを指定します。 Nがデフォルトです。デフォルトではoutmodel=パラ メータに指定した分析結果出力モデルと出力モデル 名の後に _CV の接尾辞のついた検証用モデル形式 データセットの2つのツリーモデルが出力されます。

Yを指定すると、上記2つのツリーモデルの他に、出 カモデル名の後に _CV1, _CV2, ..., _CVfold (fold はfoldパラメータの値)の接尾辞が付いた個々の交差 検証モデルも出力されます。これらの出力ツリーモ デルは、モデル分岐表作成やゲインチャート作成な ど、他のモデルと同様の操作が可能です。

なお、個々の交差検証ツリーを保存(Y/N)の指定に関わらず、outmodel=パラメータに指定した分析結果出 カモデルが入ったディレクトリ内に以下のデータセットが保存されます。(「設定」画面の「ツリーモデルディレクトリ」の「表示」ボタンから検索することができます。)

個々の交差検証モデル:

ツリーモデル名_CV1 ~ ツリーモデル名_CVfold (foldはfoldパラメータの値) 全体交差検証モデル: ツリーモデル名_CV 個々の交差検証モデルによるモデル予測値を含むデー タセット: ツリーモデル名_CVSC

```
(コマンド実行モード)
```

Data Bring New Insight to Your Business

DMT_TREEマクロではなく、**DMT_CVTREE**マクロ を使用します。

outmodel=パラメータに指定した出力モデルデータ セット名の後に、_CV1、_CV2、...、_CVfold (foldは foldパラメータの値)という接尾辞が付いた個々の交 差検証モデルを表すモデル形式データセットと _CV の接尾辞が付いた 全体交差検証モデルを表すモデ ル形式データセット、さらに、_CVSC の接尾辞がつ いた 予測スコアデータセットがWORKライブラリ に作成されます。

注意:(1)個々の交差検証モデルは交差検証時の分 割データの状況によって生成されない場合がありま す。その場合の個々の交差検証モデルによるモデル予 測値は、その交差検証モデル作成データの全体平均 出現率または全体平均値です。これらの予測値に基 づいて、個々の交差検証モデルによるモデル予測値を 含むデータセットを作成しています。

(2) 実行時間は交差検証データ分割回数だけ余分に かかります。分析データ件数が十分と思われる場合 は、交差検証ではなく、DMT_DATASAMPを用いて 分析データをモデル作成データと検証データに分け てモデル作成とモデル検証を行うことをお勧めしま す。

10.1.5 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードでは 指定できません。) 例:%dmt_tree(help)

std_mod_min_n=9

アップリフトモデルにおけるデータ件数の少ないタ ーゲット出現率や平均値の標準偏差を修正する基準 を与えるパラメータです。

そもそも施策実施群の顧客属性と施策非実施群の顧 客属性はアンバランスとなることが多いと考えられ ます。そのため、同一説明変数カテゴリに該当する データ件数が、処理群と対照群の間で非常にアンバ ランスとなる場合が起こりえます。そのとき、デー タ件数が少ない群の方のカテゴリではターゲット出 現率や平均値はバラツキ(標準偏差)が大きくなる と考えられますが、計算上の標準偏差は0または0に 近い不自然な値が得られる場合があります。このよ うな事態を避けるため、std_mod_min_n=パラメータ は、指定の値以下のデータ件数から計算されるカテ ゴリ内のターゲット出現率または目的変数の平均値 の標準偏差の計算値が全データの標準偏差より小さ い場合に全データの標準偏差に置き換えるよう指示 します。

keep_node_data=N

分析終了時にノード分割ごとに生成された中間ノー ドと終端ノードの所属オブザベーションがそれぞれ 含まれるデータセットをWORKライブラリに残すか どうか選択します。 デフォルトは残さない設定です。 例:keep_node_data=Y

node_data_prefix=

keep_node_data=Y を指定した場合に、WORKライ ブラリに生成される、各ノードの所属オブザベーシ ョンを含むデータセットの先頭に付けるプリフィッ クスワードを指定します。(デフォルトはヌル値、半 角で8文字以内)

例:: node_data_prefix=_A_

→ 既定のノード名 _N は _A_N, _C_N10 (_Cで始 まるノード名は対照群のノードです) は _C_A_N10 に変わります。

keep_node_data=Y を指定したDMT_TREEを実行 すると、実行終了後もWORKライブラリに既定のノ ードデータセット名(_N,_N1,_C_N10 など)が削 除されずに残ります。しかし、続いて別のDMT_TREE を、同じく、keep_node_data=Y を指定して実行す ると、同じ名前のノードデータセットは新しいもの に置き換わってしまいます。

node_data_prefix=パラメータは、WORKライブラリ に残っているノードデータはそのまま残しておき、 別の名前でノードデータを残したい場合に指定しま す。

なお、影響するのはWORKライブラリに生成される ノードデータセット名だけです。モデルデータセッ ト内の変数PNODE, CNODE1, CNODE2などの値の ノード名 (_N, _N11, _C_N001 など) には影響しま せん。

10.1.6 実行例

コマンド実行モードでは表示出力はありません。 モデル作成後、DMT_TREETAB などのモデルデータ を入力とする分析結果表示マクロを実行してください。

GUI実行モードでは、モデル作成処理終了後、結果表示ボタンを押すと保存された出カツリーモデル (outmodel)と入力検証データ(testdata)(もしも指定があれば)または交差検証モデル(もしも指定があれば) を用いて、以下の図表を表示します。

[分類木の場合]

(1) ツリー分岐表

検証データの指定、または交差検証モデルの指定が ある場合は、検証データにモデルを適用したモデル 形式データセット(_TEST+モデル名)を作成、また は交差検証モデル(モデル名+_CV)を利用してター ゲット予測値を1つのノード内に表示するツリー分 岐表を表示します。検証データの指定がない場合は、 検証モデル(_TEST+モデル名)は作成されず、モデ ルのターゲット予測値のみを表示するツリー分岐表

Data Bring New Insight to Your Business

を表示します。

(2) ゲインチャート

検証データが利用可能の場合は、モデルと検証のゲ インチャートを1つの図に表示します。 検証データが利用できない場合は、モデルのゲイン チャートを表示します。

(3) 比較プロット 検証データの指定がある場合のみ表示できます。

[回帰木の場合]

(1) ツリー分岐表

検証データの指定、または交差検証モデルの指定が ある場合は、検証データにモデルを適用したモデル 形式データセット(_TEST+モデル名)を作成、また は交差検証モデルを利用してターゲット予測値を1 つのノード内に表示するツリー分岐表を表示します。 検証データの指定がない場合は、検証モデル

(_TEST+モデル名)は作成されず、モデルのターゲット予測値のみを表示するツリー分岐表を表示します。

(2) 比較プロット 検証データが利用可能の場合のみ表示します。

[アップリフトモデルの場合]

(1) ツリー分岐表 検証データの指定、または交差検証モデルの指定が ある場合は、検証データにモデルを適用したモデル 形式データセット(_TEST+モデル名)を作成、また は交差検証モデル(モデル名+_CV)を利用してター ゲット予測値を1つのノード内に表示するツリー分

Data Mine Tech Ltd. Data Bring New Insight to Your Business

岐表を表示します。検証データの指定がない場合は、 検証モデル(_TEST+モデル名)は作成されず、モデ ルのターゲット予測値のみを表示するツリー分岐表 を表示します。

(2) アップリフトチャート

検証データが利用可能の場合は、モデルと検証のア ップリフトチャートを1つの図に表示します。 検証データが利用できない場合は、モデルのアップ リフトチャートを表示します。

(2) 比較プロット 検証データが利用可能の場合のみ表示します。

10.1.7 層別分析の例

例えば、住居区分別にクロス分析を行うには、以下 のように、コマンド実行モードでマクロ言語を使っ たプログラムを書いて実行します。

proc freq data=samp_data(keep=jukyo); tables jukyo/noprint out=jukyo(keep=jukyo); run;

data _null_;

if _n_=1 then call symput("n",compress(n));
set jukyo nobs=n;

call symput("JUKYO"||left(_n_),compress(jukyo)); run;

(マクロ変数値の確認)

%put &n, &JUKYO1, &JUKYO2, ... , &&JUKYO&n;

(ログ)		
8, , 1, , 7		

(住居区分別に、クロス分析をまず行い、次にその結果から説明力のある変数のみでツリーモデルを作成) %macro create model:

%do i=1 %to &n;

%dmt_cross(data=samp_data(where=(jukyo="& &JUKYO&i")),y=flg,target=1,x=sei--DM,outcross=CR OSS_&&JUKYO&i)

%dmt_tree(data=samp_data(where=(jukyo="&& JUKYO&i")),y=flg,target=1,x=sei--DM,dropx=&_XDE L,mincnt=50,maxlvl=5,outmodel=JUKYO_&&JUKYO &i..MODEL)

%if %sysfunc(exist(JUKYO_&&JUKYO&i..MOD EL)) %then %do;

%dmt_treescore(model=JUKYO_&&JUKYO&i ..MODEL,data=test_data(where=(jukyo="&&JUKYO &ii")),outscore=JUKYO_&&JUKYO&i..SCORE)

%dmt_gainchart(data=JUKYO_&&JUKYO&i.. SCORE,y=flg,target=1);

(分類木モデルの場合)

outmodel=出力データセット

%end; %end; %mend create_model; %create_model

注意:層別変数は文字変数で半角英数字の短い値を 仮定しています。数値変数の場合は、where=(変数名 =値)の値を引用符で囲うとエラーになります。

10.1.8 データセット出力

生成されたツリーモデルがoutmodel=パラメータに 指定されたデータセットに出力されます。 デフォルトは WORK._TREE という名前で出力さ れます。

以下の項目がデータセットに含まれています。

outmout				
変数名	タイプ	長さ	内容	備考
PNODE	文字	可変	親ノードの名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
CNODE1	文字	可変	子ノード1の名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
CNODE2	文字	可変	子ノード2の名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
TERM1	文字	3	子ノード1の終端識別	"YES"または"NO"
TERM2	文字	3	子ノード2の終端識別	"YES"または"NO"
ITEM	文字	32	分岐に用いる説明変数名	
ITEM_TYPE	文字	2	分岐に用いる説明変数のタイプ	"C"(文字タイプ)または"N"(数値タイプ)
CNODE1_CAT	文字	5000	子ノード1のカテゴリ値	"a","b"(文字変数の場合)、または1 [~] 10(数値変 数の場合)といった形式
CNODE2_CAT	文字	5000	子ノード2のカテゴリ値	"a","b"(文字変数の場合)、または1 [~] 10(数値変 数の場合)といった形式
CNODE1_TOT_N	数値	8	子ノード1に含まれる件数	
CNODE2_TOT_N	数値	8	子ノード2に含まれる件数	
CNODE1_TARG_N	数値	8	子ノード1に含まれるターゲット件数	
CNODE2_TARG_N	数値	8	子ノード2に含まれるターゲット件数	
Dif_Entropy	数值	8	親ノードの状態から2つの子ノードに分かれた状態に移行したときのエントロピー値の差	必ず0もしくは負の値(減少を表す)になるが、減少 幅が大きいほど分岐後の子ノード間のターゲット出 現率の差が大きいことを表す

(回帰木モデルの場合) outmodel=出力データセッ

-タセ<u>ット</u> 変数名 タイプ 長さ 内容 備考 PNODE 可変親ノードの名前 _Nxxxx["]の値。ただしxxxxは0/1の文字列 文字 Nxxxxⁿの値。ただしxxxxは0/1の文字列 文字 CNODE1 可変 子ノード1の名前 可変 子ノード2の名前 文字 Nxxxxⁿの値。ただしxxxxは0/1の文字列 CNODE2 3 子ノード1の終端識別 "YES"または"NO TERM1 文字 <u>文字</u> 文字 文字 3 子ノード2の終端識別 TERM2 YES″または″NO 32 分岐に用いる説明変数名 ITFM ITEM_TYPE ["]C"(文字タイプ)または"N"(数値タイプ) 分岐に用いる説明変数のタイプ "a","b"(文字変数の場合)、または1~10(数値変 CNODE1_CAT 文字 5000 子ノード1のカテゴリ値 数の場合)といった形式 "a","b"(文字変数の場合)、または1~10(数値変 CNODE2_CAT 文字 5000 子ノード2のカテゴリ値 数の場合)といった形式 2つの子ノードにおけるターゲット変数の群内平 wss 数値 8 方和の合計値 CNODE1_TOT_N 数値 8 子ノード1に含まれる件数 8 子ノード2に含まれる件数 CNODE2_TOT_N 数値 数値 8 子ノード1のターゲット平均値 CNODE1_MEAN 8 子ノード2のターゲット平均値 CNODE2_MEAN 数値 CNODE1_STD 数値 8 子ノード1のターゲット標準偏差 子ノード2のターゲット標準偏差 CNODE2 STD 数値 親ノードの状態から2つの子ノードに分かれた状 必ず0もしくは正の値になり、大きいほど分岐後の 数値 態に移行したときのターゲット変数の群内平方 Dif WSS 子ノード間のターゲット平均値の差が大きいことを 8 和の減少分(=群間平方和) 表す

(分類木アップリフトモデルの場合)

outmodel=田.	ハナー	タセツ		
変数名	タイプ	長さ	内容	備考
PNODE	文字	可変	親ノードの名前	″_Nxxxx″の値。ただしxxxxは0/1の文字列
CNODE1	文字	可変	子ノード1の名前	"_Nxxxx"の値。ただしxxxxは0/1の文字列
CNODE2	文字	可変	子ノード2の名前	"_Nxxxx"の値。ただしxxxxは0/1の文字列
TERM1	文字	3	子ノード1の終端識別	"YES"または"NO"
TERM2	文字	3	子ノード2の終端識別	"YES"または"NO"
ITEM	文字	32	分岐に用いる説明変数名	
ITEM_TYPE	文字	2	分岐に用いる説明変数のタイプ	"C"(文字タイプ)または"N"(数値タイプ)
CNODE1_CAT	文字	5000	子ノード1のカテゴリ値	"a","b"(文字変数の場合)、または1~10(数値変数の場合)といった形式
CNODE2_CAT	文字	5000	子ノード2のカテゴリ値	"a","b"(文字変数の場合)、または1~10(数値変 数の場合)といった形式
AIC	数値	8	AIC値	値が負で絶対値が大きいほど有意な分岐であることを意味する。
D_CNODE1_TOT_N	数値	8	子ノード1の処理群に含まれる件数	
D_CNODE1_TARG_N	数値	8	子ノード1の処理群に含まれるターゲット件数	
C_CNODE1_TOT_N	数値	8	子ノード1の対照群に含まれる件数	
C_CNODE1_TARG_N	数値	8	子ノード1の対照群に含まれるターゲット件数	スノード1の統計量
DIF_CNODE1_CONF	数值	8	子ノード1の処理群と対照群間のターゲット出現 率の差	
DIF_CNODE1_SE	数値	8	子ノード1の処理群と対照群間のターゲット出現 率の差の標準誤差	
D_CNODE2_TOT_N	数値	8	子ノード2の処理群に含まれる件数	
D_CNODE2_TARG_N	数値	8	子ノード2の処理群に含まれるターゲット件数	
C_CNODE2_TOT_N	数値	8	子ノード2の対照群に含まれる件数	
C_CNODE2_TARG_N	数値	8	子ノード2の対照群に含まれるターゲット件数	スノードのの体計量
DIF_CNODE2_CONF	数值	8	子ノード2の処理群と対照群間のターゲット出現 率の差	
DIF_CNODE2_SE	数値	8	子ノード2の処理群と対照群間のターゲット出現 率の差の標準誤差	

(回帰木アップリフトモデルの場合)

outmodel=出力データセット

		/ _ / !		
変数名	タイプ	長さ	内容	備考
PNODE	文字	可変	親ノードの名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
CNODE1	文字	可変	子ノード1の名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
CNODE2	文字	可変	子ノード2の名前	["] _Nxxxx ["] の値。ただしxxxxは0/1の文字列
TERM1	文字	3	子ノード1の終端識別	"YES"または"NO"
TERM2	文字	3	子ノード2の終端識別	"YES"または"NO"
ITEM	文字	32	分岐に用いる説明変数名	
ITEM_TYPE	文字	2	分岐に用いる説明変数のタイプ	"C"(文字タイプ)または"N"(数値タイプ)
CNODE1_CAT	文字	5000	子ノード1のカテゴリ値	"a","b"(文字変数の場合)、または1 [~] 10(数値変 数の場合)といった形式
CNODE2_CAT	文字	5000	子ノード2のカテゴリ値	"a","b"(文字変数の場合)、または1 [~] 10(数値変 数の場合)といった形式
AIC	数値	8	AIC値	値が負で絶対値が大きいほど有意な分岐であることを意味する。
D_CNODE1_TOT_N	数値	8	子ノード1の処理群に含まれる件数	
D_CNODE1_MEAN	数値	8	子ノード1の処理群のターゲット平均値	
D_CNODE1_STD	数値	8	子ノード1の処理群のターゲット標準偏差	
C_CNODE1_TOT_N	数値	8	子ノード1の対照群に含まれる件数	
D_CNODE1_MEAN	数値	8	子ノード1の対照群のターゲット平均値	スノ_ビ1の幼科号
D_CNODE1_STD	数値	8	子ノード1の対照群のターゲット標準偏差	
DIF_CNODE1_MEAN	数值	8	子ノード1の処理群と対照群間のターゲット平均 値の差	
DIF_CNODE1_SE	数值	8	子ノード1の処理群と対照群間のターゲット平均 値の差の標準誤差	
D_CNODE2_TOT_N	数値	8	子ノード2の処理群に含まれる件数	
D_CNODE2_MEAN	数値	8	子ノード2の処理群のターゲット平均値	
D_CNODE2_STD	数値	8	子ノード2の処理群のターゲット標準偏差	
C_CNODE2_TOT_N	数値	8	子ノード2の対照群に含まれる件数	
D_CNODE2_MEAN	数値	8	子ノード2の対照群のターゲット平均値	スノード2の統計量
D_CNODE2_STD	数値	8	子ノード2の対照群のターゲット標準偏差	
DIF_CNODE2_MEAN	数值	8	子ノード2の処理群と対照群間のターゲット平均 値の差	
DIF_CNODE2_SE	数值	8	子ノード2の処理群と対照群間のターゲット平均 値の差の標準誤差	

もしも交差検証を指定した場合は、個々の交差検証 出力モデル名+_CV1~_CVfold数 のモデル形式デー モデル (outmodel=出力モデル名+_CVとoutmodel= タセット) や交差検証予測値が付けられた分析デー

Data Bring New Insight to Your Business	10 分析画面 ③モデル作成表示 0
---	---------------------------

タ (outmodel=出力モデル名+_CVSC) が出力されま す。交差検証モデルについては、個々のモデルも全 体モデルも上記と同じ項目が含まれています。 交差検証予測値を含むデータセット(outmodel=出力 モデル名+_CVSC)には、以下の項目が追加されます。

交差検証予測値データセット(元のモデル作成データに追加される項目) データセット名:出力モデル名+ CVSC

変数名	タイプ	長さ		備考
_CV_NO	数值	8	交差検証データ分割番号	1~fold数
_CV_CONF	数値	8	交差検証モデル予測値	八籾ナエデルの担合
CONF	数値	8	モデル予測値	が現木モナルの場合
_CV_MEAN	数値	8	交差検証モデル予測値	回帰ナエデルの埋合
_MEAN	数値	8	モデル予測値	回帰木モアルの場合
	粉估	0	交差検証モデル予測値	
	奴但	0	(処理群予測値-対照群予測値)	
_CV_D_CONF	数値	8	交差検証モデル予測値(処理群予測値)	
_CV_C_CONF	数値	8	交差検証モデル予測値(対照群予測値)	分類木アップリフトモデルの場合
DIF_CONF	数値	8	モデル予測値(処理群予測値-対照群予測値)	
D_CONF	数値	8	モデル予測値(処理群予測値)	
C_CONF	数値	8	モデル予測値(対照群予測値)	
	米店	0	交差検証モデル予測値	
_CV_DIF_IMEAN	奴但	0	(処理群予測値-対照群予測値)	
_CV_D_MEAN	数値	8	交差検証モデル予測値(処理群予測値)	
_CV_C_MEAN	数値	8	交差検証モデル予測値(対照群予測値)	回帰木アップリフトモデルの場合
DIF_MEAN	数値	8	モデル予測値(処理群予測値-対照群予測値)	
D_MEAN	数値	8	モデル予測値(処理群予測値)	
C_MEAN	数値	8	モデル予測値(対照群予測値)	
NODE	4 4	च क	고 그 비 파 문 / 비 포 모	交差検証モデル予測値の集計用の outmodel=出
	×子	り 災	てナル別属ノート留ち	カモデルの所属ノード番号
TERM	文字	3	終端ノード判定フラグ	YES/NO
UNMATCH	文字	3	アンマッチ判定フラグ	YES/NO

さらに、コマンド実行モードで keep_node_data=Y を指定すると、ルートノード(_N)以外のすべての生成 された中間ノードおよび終端ノードが、ノード名を データセット名としてWORKライブラリに生成され たまま消さずに残ります。これらは、ノードごとの 詳細な内容を調べたい場合に役に立つと思われます。

例:_N0,_N100, _C_N111 (_Cで始まるノード名は対 照データのノードを意味します。)

これらのデータセットには以下の変数が含まれます。

- ・ターゲット変数
- ・全説明変数

・_obsno(入力データセットのオブザベーション番号)

_targflg(ターゲット値(1)、非ターゲット値(0)を識別する変数。分類木モデル、分類木アップリフトモデルの場合のみ)

10.1.9 欠損値の取り扱い

文字タイプのターゲット変数、説明変数はいずれも 有効な値の1つとみなされます。

数値タイプの説明変数に特殊欠損値(._,.A~.Z)が存在 した場合は通常欠損値(.)に変換した上で使用されま す。

数値タイプのターゲット変数の欠損値は、回帰木モ デル作成時(target=パラメータを指定しなかった場 合)にデータに存在すると、オブザベーション単位で 分析から除外します。分類木モデル作成時(target=パ ラメータを指定した場合)は、数値タイプのターゲッ ト変数の欠損値(.)は、特殊欠損値(._,.A~.Z)と区別し て他の数値と同様に取り扱われます。

10.1.10 制限

評価版のDMT_TREEマクロで処理できる入力データ セットのオブザベーション数の最大は2,000です。製 品版ではこの制限はありませんが、コンピュータ資 源等の制約により実質的に取扱えるオブザベーショ ン数には限りがあります。

入力できる説明変数の最大数は2,000です。ただし、 各変数のカテゴリ数、その他の要因によるコンピュ ータ資源不足などの理由で1回の分析では2,000未満 の説明変数しか取り扱えない場合もあり得ます。

指定可能な最大階層数は20に設定しています。 ただし、20階層まですべての親ノードが子ノードに 分岐するとした場合、2の20乗(=1,048,576) 個の終 端ノードが生成され、中間ノードを含めるとその倍 の数のノードをワーク領域に保持します。コンピュ ータ資源(メモリ、ポインタその他)の制約、その 他の理由から、20階層未満のツリーしか作成できな い場合もあり得ます。

注意:1回の分岐において3つ以上のノードに分ける 機能、同時に3つ以上のターゲット峻別行う機能は現 バージョンのDMT_TREE、DDMT_CVTREEにはあり ません。 入力データセットに以下の変数が存在する場合、警告を出して処理を中止します。入力データセットから削除しておくか、変数名を変えてください。(_v&i.c は_V+数字+Cという形式の変数名を表します。)

_id _item _obsno _targflg _v&i.c

10.1.11 コマンド実行モードでの注意

ユーザ定義フォーマットがついた変数を含むデータ セットをアクセスするためには、そのフォーマット も利用可能でなければなりません。ユーザ定義フォ ーマットのついた変数を含む分析データセットを永 久保存する場合は、そのフォーマットも永久保存し てください。

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item \$_VARTYP \$_VARSCL

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type lab&i nobs spc&i typ&i zketa _nofound _speclen _specnum _delnode _errormsg

10.2 分岐表(dmt_treetab)

DMT_TREETAB 指定画面	×
ツリー分岐表	入力指定のリセット
入力モデル(*model=) … 表示 入力検証モデル(test=) … 表示 部分表示のための親ノードの指定(parent=) … 表示 親ノードからの最大分岐レベルの指定(depth=) … … 出力ツリー分岐表データ(outtab=) _treetab 表示 表示タイトル(title=) … 表示 詳細出力(detail=) ● Y ● N 結果の画面表示 (print=) ● Y ● N ラベル・フォーマット参照データ(labeldat=) … 表示 (性成コード] _ _ _	
[ログ]	実行 前回 戻る

10.2.1 概要

ツリー分岐表 (DMT_TREETAB) はデシジョンツリーモ デル作成(DMT TREE)を実行して作成されたモデ ルデータセット、または新しいデータを基準にモデル 予測値修正 (DMT_TREESCORE) を実行して作成さ れたモデル形式データセットを入力として、ツリー モデルの内容をノード分岐過程がわかる階層形式の 表として画面表示します。表示される各ノードの情 報は、各ノードにおける件数やターゲット値の分布 情報および親ノードからの分岐に用いられた説明変 数名と値です。DMT_TREEで作成されたモデルデー タセットとそのモデルをDMT_TREESCOREを用い てテストデータに適用して得られたテストデータに おけるモデル形式データセットの両方を入力とした 場合は、各ノードにおけるモデル作成データ、テス トデータそれぞれの該当件数、ターゲット件数およ びターゲット出現率またはターゲット平均値と標準 偏差を表の各ノードの中に同時表示します。

10.2.2 指定方法

(コマンド実行モードでの指定)

%dmt_treetab(help,model=,test=,parent=N ,depth=&_max_lvl,outtab=_treetab,print=Y,labeldat= ,nolabel=N,detail=N,title=,pctf=7.2,meanf=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,language=JAPANESE ,outhtml=dmt_treetab.html,outpath=)

(GUI実行モードでの変更点)

help, outhtml=, outpath=パラメータは指定不可。(自動で行われます。)

- ・print=Y に固定。
- ・labeldat=パラメータは自動入力。

Data Bring New Insight to Your Business

10 分析画面 ③モデル作成表示 1.1

(必須パラメータ)

以下の1個のパラメータは省略できません。

入力モデル (model=)

(オプションパラメータ)

以下の**18**個のパラメータは任意指定です。(=の右辺の値はデフォルト値を表しています)

help ... 指定方法のヘルプメッセージの表示。(コマ ンド実行モードでのみ有効) 入力検証モデル (test=) ... モデルをテストデータに適用して得られた モデル形式入力データセット名を指定。 部分表示のための親ノードの指定 (parent=N) ... 描きたいツリーのルートノードを指定。 親ノードからの最大分岐レベルの指定 (depth=&_max_lvl) ... 描きたいツリーのルートノードからの深さ レベル数を指定。 出カツリー分岐表データ (outtab=_treetab) ... ツリー表画面出力データセットの名前を指 定。 結果の画面表示 (print=Y) ... ノードテーブルの画面表示を行うか否かを 指定。(Y または N, GUI実行モードではY固定) 変数ラベルと値ラベルを表示しない (nolabel=N) ... 変数ラベルと値ラベルを用いずに変数名、変 数値を用いた結果表を作成。 詳細出力 (detail=N) ... 詳細な終端ノード統計量を表示。 画面出力のタイトルの指定 (title=) %str,%nrstr,%bquote などの関数で囲んで 指定する(コマンド実行モードでのみ有効) 百分率の表示フォーマットの指定 (pctf=7.2) 平均値・標準偏差の表示フォーマットの指定 (meanf=best8.) アップリフトモデルにおける処理群(DATA)を表す記号 (d_label=[D]) アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C]) アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C]) 言語の選択 (language=JAPANESE) HTML出力ファイル名 (outhtml=dmt_crosstab.html) (コマンド実行モードでのみ有効) HTMLファイル出力ディレクトリの指定 (outpath=) (コマ ンド実行モードでのみ有効) ラベル・フォーマット参照データ (labeldat=) (コマンド実行モードでのみ有効)

10.2.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

入力検証モデル (test=)

dmt_treescoreを用いてモデルをモデル検証用データ セットに適用したときのモデル形式データセットが 得られている場合、そのモデル形式データセット名 を指定します。この指定により、各ノードごとに、 モデルの集計値に加えて検証データにおける集計値 も同時表示されます。

例:test=test1

部分表示のための親ノードの指定 (parent=N)

ツリーモデルを部分表示するための指定です。指定 のノードをルートノードとみなした場合の部分ツリ ーを表示します。デフォルトはparent=N、すなはち 本来のルートノードです。ただし、ノード名の最初 の"_"(アンダースコア,アンダーバー)は省略して指定 しなければなりません。ツリーの階層数が多く、一 度にツリー全体を表示することができない場合、ま たは表示できたとしても大きな表となってしまいペ ージにフィットしないような場合、このパラメータ とdepth=パラメータを用いてモデルの部分表示を行 います。たとえば、parent=NOを指定してdmt_treetab を実行すると、ノードNOから分岐しているノードの みが画面表示されます。続いてparent=N1を指定して dmt_treetabをもう一度実行すると、今度はノードN1 から分岐しているノードのみが画面表示されます。2 つの表示を合わせるとモデル全体の情報が得られま す。(さらにN1とN0の関係は paraent=N, depth=1 を 指定した部分ツリーで表示することもできます。)

なお、ノード名の規則はルートノードをNとし、第一 階層の2つのノードをそれぞれN0,N1としています。 第k階層の任意のノードを Nxxx...x(ただし、xは0ま たは1のいずれかの値を持ち、xxx...xの部分はk個のx の列だとします)とすると、その子ノードはNxxx...x0 とNxxx...x1と表記されます。 例: parent=N01

親ノードからの最大分岐レベルの指定 (depth=&_max_lvl)

ツリーモデルを部分表示するときに用いる指定です。 指定階層数のみを表示します。デフォルトはmodel= に指定されたモデルデータセットの最大階層です。 ツリーモデルでは重要な説明変数ほどツリーの浅い 階層の分岐に使用されますので、作成されたモデル の最大階層数が大きい場合、最初の階層の分岐を見 ることが重要です。なお、この指定は相対的な階層 数を意味しています。parent=指定があれば、parent= に指定されたノードをルートノードとみなしてそこ からdepth=パラメータの値の階層数までを表示しま す。

出カツリー分岐表データ (outtab=_treetab)

ツリー表画面表示用データセットを出力したい場合 に指定します。デフォルトは_treetabです。ツリー表

画面表示用データセットとは、最終的な表示を行う proc tabulateへ直接入力できるデータセットの意味 です。

表示タイトル (title=)

画面出力される表にタイトルを指定できます。指定 しない(デフォルト)場合、以下のようなタイトル が自動的に付与されます。

%bquote(DMT_TREE モデルデータセット: &model, テストデータに対するモデル形式データセット: &test)

タイトルを指定する場合、上記のように%bquote関数の中に記述してください。

詳細出力 (detail=N, または details=N)

ツリー分岐表の表示項目を制御します。デフォルト はdetail=N。detail=Yを指定すると、表示項目数が増 えます。

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

結果の画面表示 (print=Y)

ツリーテーブルを画面表示する(Y)かしない(N) かを指定します。デフォルトは画面表示する(Y)で す。print=Nを指定しても、outtab=パラメータに指定 したデータセットに画面表示するためのツリー情報 が出力されます。

変数ラベルと値ラベルを表示しない (nolabel=N)

Yを指定すると、表示が元の変数名、値に変わります。

ラベル・フォーマット参照データ (labeldat=)

ラベルとフォーマットが定義されたデータセットを 指定することにより、分析結果の全変数名と文字タ イプ変数値に、それぞれ定義された変数ラベルとフ ォーマットが付加されて表示されるようになります。 この指定が無い場合は、変数名、変数値がそのまま 表示されます。数値タイプ説明変数には、フォーマ ットが定義されていたとしても無視します。なお、 フォーマット定義された変数を含むデータセットを アクセスするためには、そのフォーマットライブラ リもアクセス可能になっている必要があります。ラ ベル定義されたデータセットを保存して再利用した い場合は、フォーマットライブラリも保存しておく 必要があります。(GUI実行モードではモデルがどの データから作成されたかを記録しているため、その データが存在する場合は自動入力されます)

1.1

10.2.4 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。 例:%dmt_treetab(help)

10.2.5 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_treetab.html

分析結果を保存するHTML出力ファイル名を指定します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

10.2.6 実行例

例1:分類木(検証結果表示なし、変数ラベル、値 ラベルなし)

%dmt_tree(data=data.samp_data,y=flg,target=1,x=s ei nenrei,outmodel=flg1) %dmt_treetab(model=flg1)

DMT_TREE モデルテーブル (モデルデータセット: flg1)

			件数割 合%	ターゲット 再現率%	ターゲット 出現率%
LVL0	LVL1	LVL2			
ROOT:22.85% (457/2,000)	N0: 41.44%(92/222) NENREI=LOW~23		11.10	20.13	41.44
	N1: 20.53%(365/1,778) NENREI=23<~HIGH	N10: 18.09% (214/1,183) SEI="1"	59.15	46.83	18.09
		N11: 25.38%(151/595) SEI="2"	29.75	33.04	25.38

例2:回帰木(変数ラベル、値ラベルあり、検証結 果表示あり、数値の表示フォーマット指定あり)

%dmt_tree(data=samp_data,y=nenshu,x=sei nenrei,outmodel=nenshu1,maxlvl=2) %dmt_treescore(model=nenshu1,data=test_data,y= nenshu,outmodel=TEST_nenshu1) %dmt_treetab(model=nenshu1,test=TEST_nenshu1, labeldat=samp_data,pctf=3.,meanf=6.1)

1.1

注:GUI実行モードではlabeldat=パラメータは自動設 定されます。

DMT_TREE モデルテーブル(モデルデータセット: nenshu1, テストデータに対するモデ ル形式データセット: TEST_nenshu1)

			モデル 件数割 合%	モデル ターゲッ ト平均値	モデル ターゲッ ト標準偏 差	テスト 件数割 合%	テスト ターゲッ ト平均値	テスト ターゲッ ト標準偏 差
Ivi0	Ivi1	Ivi2						
ROOT:514.0 (N=1,445,S=202.7):508.8 (N=1,392,S=198.1)	N0: 506.3 (N=898,S=201.1): 504.5 (N=841,S=203.0) SEI 性別	N00: 495.5(N=561,S=190.9): 498.3 (N=537,S=199.5) NENREI 年龄 =33~58	39	495.5	190.9	39	498.3	199.5
	="1 男性"	N01: 524.4(N=337,S=215.8): 515.3 (N=304,S=208.5) NENREI 年龄 =LOW~<33,58<~HIGH	23	524.4	215.8	22	515.3	208.5
	N1: 526.7 (N=547,S=204.8): 515.5 (N=551,S=190.3) SEI 性別	N10: 544.2(N=363,S=214.7): 523.5 (N=371,S=193.9) NENREI 年龄 =23~48	25	544.2	214.7	27	523.5	193.9
	="2 女性"	N11: 492.1(N=184,S=178.7): 499.0 (N=180,S=181.6) NENREI 年齢 =LOW~<23,48<~HIGH	13	492.1	178.7	13	499.0	181.6

例3:ツリーの部分表示。ルートノードから1階層分 のみ表示 %dmt_treetab(model=nenshu1,test=TEST_nenshu1, labeldat=samp_data,meanf=6.1,parent=N,depth=1)

DMT_TREE 部分モデルテーブル (モデルデータセット: nenshu1, ROOT ノード から 1 階 層下までのノードを表示)

		件数割 合%	ターゲッ ト平均値	ターゲット 標準偏差	テスト件 数割合%	テストター ゲット平均値	テストター ゲット標準偏 差
IVI0	Ivi1						
ROOT:514.0(N=1,445,S=202.7):508.8 (N=1,392,S=198.1)	N0: 506.3(N=898,S=201.1): 504.5 (N=841,S=203.0) SEI 性別=''1 男性''	62.15	506.3	201.1	60.42	504.4	203.0
	N1: 526.7(N=547,S=204.8): 515.5 (N=551,S=190.3) SEI 性別="2 女性"	37.85	526.7	204.8	39.58	515.5	190.3

例4:詳細表示

%dmt_tree(data=SAMP_DATA(where=(DM="1")),co ntrol=SAMP_DATA(where=(DM="0")),y=flg,target=1 ,x=sei nenrei jukyo,outmodel=flg_uplift ,mincnt=100,maxlvl=5) %dmt_treetab(model=flg_uplift,depth=1)

%dmt_treetab(model=flg_uplift,depth=1,detail=Y)

注:DMT_TREETABマクロの detail=Yオプションは、 アップリフトモデルの表示の場合のみ有効です。

DMT_TREE 部分モデルテーブル (モデルデータセット: _tree_flg_uplift, ROOT ノード から1 階層下までのノードを表示)

		[D]-[C]ター ゲット出現率 の差%	[D]件数 割合%	[D] ター ゲット出現 率%	[C]件数 割合%	[C] ター ゲット出現 率%
LVL0	LVL1					
ROOT:[D]-[C]11.36%(SE=2.14%), [D]30.69%(190/619),[C]19.33% (267/1,381)	N0: [D]-[C]-1.67%(SE=2.47%),[D] 18.60%(64/344),[C]20.27% (192/947) SEI="1"	-1.67	55.57	18.61	68.57	20.28
	N1: [D]-[C]28.54%(SE=3.51%),[D] 45.82%(126/275),[C]17.28% (75/434) SEI="2"	28.54	44.43	45.82	31.43	17.28

DMT_TREE 部分モデルテーブル (モデルデータセット: _tree_flg_uplift, ROOT ノード から1階層下までのノードを表示)

		[D]-[C] ターゲッ ト出現率 の差%	[D]-[C] ターゲット 出現率の差 の標準誤 差%	[D]件 数割 合%	[D]ター ゲット 再現 率%	[D]ター ゲット 出現 率%	[C]件 数割 合%	[C]ター ゲット 再現 率%	[C]ター ゲット 出現 率%
LVL0	LVL1								
ROOT:[D]-[C]11.36% (SE=2.14%),[D]30.69% (190/619),[C]19.33% (267/1,381)	N0: [D]-[C]-1.67% (SE=2.47%),[D]18.60% (64/344),[C]20.27% (192/947) SEI="1"	-1.67	2.47	55.57	33.68	18.61	68.57	71.91	20.28
	N1: [D]-[C]28.54% (SE=3.51%),[D]45.82% (126/275),[C]17.28% (75/434) SEI="2"	28.54	3.51	44.43	66.32	45.82	31.43	28.09	17.28

10.2.7 データセット出力

ルトはWORK._TREETABという名前で作成されます。

outtab=パラメータ に指定されたデータセットにツ リーテーブルデータセットが出力されます。デフォ

(分類木モデルの場合)

outtab=出力データセット

変数名	タイプ	長さ	内容	備考
IvI0	文字	可変	いリーノード 呼屈レノード ウギジロ亦物 桂起たます亦物	0階層目のノード=ルートノード
lvl1 lvlk	文字	可変	リリーノート 陌眉とノート 正我 読 明 多 奴 情報 ど 衣 9 多 奴	1階層目~k階層目のノード
N_PCT	数値	8	終端ノードの件数構成比率(%)	ノード件数/総件数
TARG_N_PCT	数値	8	終端ノードのターゲット再現率(%)	ターゲット件数/ターゲット総件数
CONF_PCT	数値	8	終端ノードのターゲット出現率(%)	ターゲット件数/ノード件数
TEST_N_PCT	数値	8	検証データの終端ノードの件数構成比率(%)	taat- パラメータな作字」を提合に作品
TEST_TARG_N_PCT	数値	8	検証データの終端ノードのターゲット再現率(%)	test-ハリケーテを指定した場口にIFR
TEST CONF PCT	数值	8	検証データの終端ノードのターゲット出現率(%)	C110友奴

(回帰木モデルの場合)

outtab=出力データセット

	• •	-		
変数名	タイプ	長さ	内容	備考
IvI0	文字	可変	☆川/『哔薩を/『完美説明亦物桂根なます亦物	0階層目のノード=ルートノード
lvl1 lvlk	文字	可変	リリーノート 陌眉とノート 正我 読 明 多 数 情報 ど 衣 9 多 数	1階層目~k階層目のノード
MEAN	数値	8	終端ノードのターゲット平均値	
STD	数値	8	終端ノードのターゲット標準偏差	
N_PCT	数値	8	終端ノードの件数構成比率(%)	ノード件数/総件数
TEST_MEAN	数値	8	検証データの終端ノードのターゲット平均値	
TEST_STD	数值	8	検証データの終端ノードのターゲット標準偏差	lest-ハリケーチを相圧しに場合にTFR
TEST N PCT	数値	8	検証データの終端ノードの件数構成比率(%)	これの変数

10 分析画面 ③モデル作成表示 1.1

(分類木アップリフトモデルの場合)

outtab=出刀つ	ァーク	メセッ	ソト	
変数名	タイプ	長さ	内容	備考
IvI0	文字	可変	☆川/『哔層を/『史美説明亦粉桂起たます亦粉	0階層目のノード=ルートノード
lvl1 lvlk	文字	可変	ノリーノート哈哈とノート定義読明多数情報を衣す多数	1階層目~k階層目のノード
D_N_PCT	数値	8	終端ノードの件数構成比率(%)[処理群]	
D_TARG_N_PCT	数値	8	終端ノードのターゲット再現率(%)[処理群]	detai=Yの場合のみ出力される
D_CONF_PCT	数値	8	終端ノードのターゲット出現率(%)[処理群]	
C_N_PCT	数値	8	終端ノードの件数構成比率(%)[対照群]	
C_TARG_N_PCT	数値	8	終端ノードのターゲット再現率(%)[対照群]	detai=Yの場合のみ出力される
C_CONF_PCT	数値	8	終端ノードのターゲット出現率(%)[対照群]	
DIF_CONF_PCT	数値	8	終端ノードのターゲット出現率の差([処理群]-[対照群])	
DIF_SE_PCT	数値	8	終端ノードのターゲット出現率の差の標準誤差	detai=Yの場合のみ出力される
TEST_D_N_PCT	数値	8	検証データの終端ノードの件数構成比率(%)[処理群]	test= パラメータを指定した場合に作成
TEST_D_TARG_N_PCT	数値	8	検証データの終端ノードのターゲット再現率(%)[処理群]	される変数(上記と同じ項目名に接頭辞
				TEST_がつく) (TEST_DIF_CONF_PCT,
			(途中省略)	TEST_D_TARG_N_PCT,
				TEST_C_TARG_N_PCTは detail=Yの場
TEST_DIF_SE_PCT	数値	8	検証データの終端ノードのターゲット出現率の差の標準誤差	合のみ出力される)

(回帰木アップリフトモデルの場合)

outtab=出力データセット
 タイプ
 長さ

 文字
 可変
 内容 備考 変数名 lvl0 0階層目のノード=ルートノート ツリーノード階層とノード定義説明変数情報を表す変数 文字 lvl1... lvlk 階層目~k階層目のノード 可変 D_N_PCT 8 終端ノードの件数構成比率(%)[処理群] 数値 終端ノードのターゲット平均値[処理群] D_MEAN 数値 D_STD 数値 8 終端ノードのターゲット標準偏差[処理群] detai=Yの場合のみ出力 C_N_PCT 数値 8 終端ノードの件数構成比率(%)[対照群] 8 終端ノードのターゲット平均値[対照群] 8 終端ノードのターゲット標準偏差[対照群] C_MEAN 数値 detai=Yの場合のみ出力 C STD 数値 8 終端ノードのターゲット平均値の差([処理群]-[対照群]) 8 終端ノードのターゲット平均値の差([処理群]-[対照群]) 8 終端ノードのターゲット平均値の差の標準誤差 DIF MEAN 数値 DIF_SE 数値 detai=Yの場合のみ出力 8 検証データの終端ノードの件数構成比率(%)[処理群] 8 検証データの終端ノードのターゲット平均値[処理群] test= パラメータを指定した場合に作成 TEST_D_N_PCT 数値 される変数(上記と同じ項目名に接頭辞 TEST D MEAN 数値 (涂中省略) TEST がつく) (TEST DIF SE, TEST D STD. TEST_C_STDは detail=Yの場合のみ出 数値 8 検証データの終端ノードのターゲット平均値の差の標準誤差 TEST DIF SE カされる)

10.2.8 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$NODE_C \$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

nobs zketa e_name e_type _errormsg

10.3 ノード表 (dmt_nodetab)

DMT_NODETAB 指定画面	×
ノー ^ド 定義表	入力指定のリセット
入力モデル (*model=) 入力検証モデル (test=) ノード表示順 (order=) ● 昇順 ● 降順 出力ノード定義表データ (outtab=)	
	実行夏る

10.3.1 概要

ノード定義表(DMT_NODETAB)はデシジョンツリーモ デル作成(DMT_TREE)を実行して作成されたモデ ルデータセット、または新しいデータを基準にモデル 予測値修正(DMT_TREESCORE)を実行して作成さ れたモデル形式データセットを入力として、ツリー モデルの各終端ノードを、分類木モデルにおいては ターゲット出現率、回帰木モデルにおいてはターゲ ット変数の平均値の小さい、または大きい順に並べ て、その終端ノードに至るすべての中間ノードを含 むノード情報を表形式で画面表示します。

ッリー分岐表 (DMT_TREETAB) がモデルのノード分 岐過程をそのまま表現するのに対して、 DMT_NODETABは終端ノードのターゲット出現率の 大きさの順にその終端ノードに至るすべての中間ノ ードを含む説明変数値の組合せを横一線に見やすい 形で表示します。DMT_TREEで作成されたモデルデ ータセットとそのモデルをDMT_TREESCOREを用 いてテストデータに適用して得られたテストデータ におけるモデル形式データセットの両方を入力した 場合は、各ノードにおけるモデル作成データ、テス トデータそれぞれの該当件数、ターゲット件数およ び、分類木においてはターゲット出現率、回帰木に おいてはターゲット変数の平均値を各ノードの中に 同時表示します。

10.3.2 指定方法

(コマンド実行モードでの指定)

%dmt_nodetab(help,model=,test= ,outtab=_nodetab,order=ascending ,print=Y,labeldat=,nolabel=N,detail=N ,title=,pctf=7.2,meanf=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C]

Data Bring New Insight to Your Business

,language=JAPANESE ,outhtml=dmt_nodetab.html,outpath=)

(GUI実行モードでの変更点)

help, outhtml=, outpath=パラメータは指定不可。(自動で行われます。)
print=Y に固定。
labeldat=パラメータは自動入力。

(必須パラメータ)

以下の1個のパラメータは省略できません。

入力モデル (model=)

(オプションパラメータ)

以下の**17**個のパラメータは任意指定です。(=の右辺の値はデフォルト値を表しています)

help ... 指定方法のヘルプメッセージの表示。(コマ ンド実行モードでのみ有効) 入力検証モデル (test=) ... モデルをテストデータに適用して得られた モデル形式入力データセット名を指定。 出力ノード定義表データ (outtab=_nodetab) ... ツリーノード定義表画面出力データセット の名前を指定。 ノード表示順の指定 (order=ascending) ... 終端ノードの表示順序をターゲット出現率の 小さい順とするか大きい順とするかの選択 (ascending/descending) . 結果の画面表示 (print=Y) ... ノードテーブルの画面表示を行うか否かを指 定。(Y または N,GUI実行モードではY固定) 変数ラベルと値ラベルを表示しない (nolabel=N) ... 変数ラベルと値ラベルを用いずに変数名、変 数値を用いた結果表を作成。 詳細出力 (detail=N) ... 詳細な終端ノード統計量を表示。 画面出力のタイトルの指定 (title=) %str,%nrstr,%bquote などの関数で囲んで 指定する(コマンド実行モードでのみ有効) 百分率の表示フォーマットの指定 (pctf=7.2) 平均値・標準偏差の表示フォーマットの指定 (meanf=best8.) アップリフトモデルにおける処理群(DATA)を表す記号 (d label=[D]) アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C]) アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C]) 言語の選択 (language=JAPANESE) HTML出力ファイル名 (outhtml=dmt nodetab.html) (コマンド実行モードでのみ有効) HTMLファイル出力ディレクトリの指定 (outpath=)(コマ ンド実行モードでのみ有効) ラベル・フォーマット参照データ (labeldat=) (コマンド実行モードでのみ有効)

10.3.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

入力検証モデル (test=)

dmt_treescoreを用いてモデルをモデル検証用データ セットに適用したときのモデル形式データセットが 得られている場合、そのモデル形式データセット名 を指定します。この指定により、各ノードごとに、 モデルの集計値に加えて検証データにおける集計値 も同時表示されます。 例:test=test1

ノード表示順 (order=ascending)

終端ノードの表示順序を指定します。デフォルトは ascending(ターゲット出現率またはターゲェット平 均値の小さい順)です。descendingを指定すると、 ターゲット出現率またはターゲット平均値の大きい 順に終端ノードが並べられた表になります。

出力ノード定義表データ (outtab=_nodetab)

ノードテーブルデータセットの出力先を指定します。 デフォルトは_nodetabです。

表示タイトル(title=)

画面出力される表にタイトルを指定できます。指定 しない(デフォルト)場合、以下のようなタイトル が自動的に付与されます。

%bquote(DMT_TREE ノードテーブル(モデルデー タセット名: &model) ターゲット出現率の小さい順))

タイトルを指定する場合、上記のように%bquote関数の中に記述してください。

詳細出力 (detail=N, または details=N)

ツリーノード表の表示項目を制御します。デフォルトはdetail=N。detail=Yを指定すると、表示項目数が増えます。

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

結果の画面表示 (print=Y)

ノードテーブルを画面表示する(Y)かしない(N) かを指定します。デフォルトは画面表示する(Y)で

す。print=Nを指定しても、outtab=パラメータに指定 したデータセットに画面表示するためのノード情報 が出力されます。

変数ラベルと値ラベルを表示しない (nolabel=N)

Yを指定すると、表示が元の変数名、値に変わります。

ラベル・フォーマット参照データ (labeldat=)

ラベルとフォーマットが定義されたデータセットを 指定することにより、分析結果の全変数名と文字タ イプ変数値に、それぞれ定義された変数ラベルとフ ォーマットが付加されて表示されます。この指定が 無い場合は、変数名、変数値がそのまま表示されま す。数値タイプ説明変数には、フォーマットが定義 されていたとしても無視されます。なお、フォーマ ット定義された変数を含むデータセットをアクセス するためには、そのフォーマットライブラリもアク セス可能になっている必要があり、ラベル定義され たデータセットを保存して再利用したい場合は、フ ォーマットライブラリも保存しておく必要がありま す。(GUI実行モードではモデルがどのデータから作 成されたかを記録しているため、そのデータが存在 する場合は自動入力されます)

10.3.4 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。 例:%dmt_nodetab(help)

10.3.5 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存

先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_nodetab.html

分析結果を保存するHTML出力ファイル名を指定します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

10.3.6 実行例

例1:分類木(検証結果表示なし、変数ラベル、値 ラベルなし)

%dmt_tree(data=samp_data,y=flg,target=1,x=sei nenrei,outmodel=flg1) %dmt_nodetab(model=flg1)

DMT_TREE ノードテーブル(モデルデータセット: flg1) ターゲット出 現率の小さい順

No.	ノー ド	LVL1	LVL2	件数割 合%	ターゲッ ト再現 率%	ターゲッ ト出現 率%	累積件数 割合%	累積夕一 ゲット再現 率%	累積ター ゲット出 現率%
1	_N10	N1: 20.53%(365/1,778) NENREI=23<~HIGH	N10: 18.09% (214/1,183) SEI="1"	59.15	46.83	18.09	59.15	46.83	18.09
2	_N11	N1: 20.53%(365/1,778) NENREI=23<~HIGH	N11: 25.38% (151/595) SEI="2"	29.75	33.04	25.38	88.90	79.87	20.53
3	_N0	N0: 41.44%(92/222) NENREI=LOW~23		11.10	20.13	41.44	100.00	100.00	22.85

デフォルトでは、出現率の昇順に終端ノードが並べられて表示されます。

LVL1~LVL2の各セルの中には、ツリー分岐表の各ノードと同じく、ツリーノードの識別番号:各ノードのター ゲット出現率%(ターゲット件数/件数)そして、親ノードから分岐する条件を表す 説明変数=値(値の範囲) が表示されます。

ノードテーブルを作成することにより、各終端ノードの特徴(説明変数の値の組合せ)が把握しやすくなりま す。

例2:回帰木(変数ラベル、値ラベルあり、検証結 果表示あり、数値の表示フォーマット指定あり、ノ ードはモデル予測値(平均値)の降順に並べる)

%dmt_tree(data=samp_data,y=nenshu,x=sei nenrei,outmodel=nenshu1,maxlvI=2) %dmt_treescore(model=nenshu1,data=test_data,y= nenshu,outmodel=TEST_nenshu1) %dmt_nodetab(model=nenshu1,test=TEST_nenshu 1,labeldat=samp_data, pctf=3.,meanf=6.1,order=descending)

注: GUI実行モードではlabeldat=パラメータは自動設 定されます。

DMT_TREE ノードテーブル (モデル: nenshu1, テスト: TEST_nenshu1 の比較) ターゲット平均値の大きい順

No.	終端	Ivi1	Ivi2	件数	ターゲッ	ターゲッ	累積 件数	累積 夕—	累積 夕—	テスト件	テスト	テスト	テスト男	テスト男	テスト
	۲			合%	ト平均値	ン ト 標 差	割 合%	- ゲッ ト 甲 値	- ゲッ ト標 編 差	数割 合%	- ター ケッ ト 甲 値	- タゲト準差	- 積件 数割 合%	▲積ーッ平値	ネー ター ゲット 標準偏 差
1	_N10	N1: 526.7 (N=547,S=204.8): 515.5 (N=551,S=190.3) SEI 性別="2 女性"	N10: 544.2 (N=363,S=214.7): 523.5 (N=371,S=193.9) NENREI 年齡=23~48	25	544.2	214.7	25	544.2	214.7	27	523.5	193.9	27	523.5	193.9
2	_N01	N0: 506.3 (N=898,S=201.1): 504.5 (N=841,S=203.0) SEI 性別="1 男性"	N01: 524.4 (N=337,S=215.8): 515.3 (N=304,S=208.5) NENREI 年齢 =LOW~<33,58<~HIGH	23	524.4	215.8	48	534.7	215.5	22	515.3	208.5	48	519.8	200.6
3	_N00	N0: 506.3 (N=898,S=201.1): 504.5 (N=841,S=203.0) SEI 性別="1 男性"	N00: 495.5 (N=561,S=190.9): 498.3 (N=537,S=199.5) NENREI 年齡=33~58	39	495.5	190.9	87	517.2	205.8	39	498.3	199.5	87	510.3	200.4
4	_N11	N1: 526.7 (N=547,S=204.8): 515.5 (N=551,S=190.3) SEI 性別="2 女性"	N11: 492.1 (N=184,S=178.7): 499.0 (N=180,S=181.6) NENREI 年齢 =LOW~<23,48<~HIGH	13	492.1	178.7	100	514.0	202.7	13	499.0	181.6	100	508.8	198.1

各ノードセル内にはモデル情報(平均値(件数、標準偏差))に続いて:(コロン)の後に検証データにモデル の分岐条件を当てはめたときの情報(平均値(件数、標準偏差))が追加されて表示されます。

例3:詳細表示

%dmt_nodetab(model=kingaku_uplift,detail=Y)

%dmt_tree(data=SAMP_DATA(where=(DM="1")),co ntrol=SAMP_DATA(where=(DM="0")),y=kingaku ,x=sei nenrei jukyo,outmodel=kingaku_uplift ,mincnt=100,maxlvI=5) %dmt_nodetab(model=kingaku_uplift) 注:DMT_TREETABマクロの detail=Yオプションは、 アップリフトモデルの表示の場合のみ有効です。

DMT_TREE ノードテーブル(モデルデータセット: kingaku_uplift) ターゲット平均値の差の小さい順

No.	ノ- ド	LVL1	LVL2	[D]-[C]ター ゲット平均値 の差	[D]件 数割 合%	[D] タ ー ゲット平均 値	[C]件 数割 合%	[C] タ ー ゲット平均 値	[D]-[C]累積 ターゲット平 均値の差	[D]累積 件数割 合%	[D]累積ター ゲット平均 値	[C]累積 件数割 合%	[C] 累積ター ゲット平均 値
1	_N00	N0: [D]-[C]-48.3264(SE=299.0199),[D] 56.10756(N=344,S=171.8592),[C] 104.434(N=947,S=244.6984) SEI="1"	N00: [D]-[C]-75.6604(SE=358.6228),[D] 82.765(N=200,S=214.8141),[C]158.4254 (N=623,S=287.1675) JUKYO="3"," ","4","5","7"	-75.6604	32.31	82.765	45.11	158.4254	-75.6604	32.31	82.765	45.11	158.4254
2	_N01	N0: [D]-[C]-48.3264(SE=299.0199),[D] 56.10756(N=344,S=171.8592),[C] 104.434(N=947,S=244.6984) SEI="1"	N01: [D]-[C]18.46605(SE=64.5786),[D] 19.08333(N=144,S=64.10186),[C]0.617284 (N=324,S=7.832455) JUKYO="2","1","6"	18.46605	23.26	19.08333	23.46	0.617284	-48.3265	55.57	56.10756	68.57	104.434
3	_N10	N1: [D]-[C]130.5538(SE=386.6487),[D] 221.5055(N=275,S=311.1448),[C] 90.95161(N=434,S=229.5346) SEI="2"	N10: [D]-[C]22.55774(SE=99.96399),[D] 24.82857(N=105,S=93.59675),[C]2.270833 (N=240,S=35.10623) JUKYO="1","2","6","7"	22.55774	16.96	24.82857	17.38	2.270833	-34.9847	72.54	48.79287	85.95	83.77761
4	_N11	N1: [D]-[C]130.5538(SE=386.6487),[D] 221.5055(N=275,S=311.1448),[C] 90.95161(N=434,S=229.5346) SEI="2"	N11: [D]-[C]142.3226(SE=455.1069),[D] 342.9824(N=170,S=335.4804),[C]200.6598 (N=194,S=307.5309) JUKYO="5"," ","3","4"	142.3226	27.46	342.9824	14.05	200.6598	29.39108	100.00	129.5881	100.00	100.197

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 1.1

DMT_TREE ノードテーブル(モデルデータセット: kingaku_uplift) ターゲット平均値の差の小さい順

No.	<i>J</i> − β	LVL1	LVL2	[D]-[C] ターケッ	[D]-[C] ターケッ	[D]件 数判	[D]夕一 ケット平	[D]ター ゲット挿	[C]件 数制	[C]夕一 グット平	[C]夕- ゲット標	[D]·[C]累 括々	[D]·[C]累 括々	[D]累 結件数	[D]累積 ターゲッ	[D]累積 ターゲッ	[C]累 結件数	[C]累積 ターゲッ	[C]累積 ターゲッ
	ľ			ト平均値 の差	ト平均値 の差の標 準誤差	<u>合</u> %	均值	準偏差	<u>合</u> %	均值	準偏差	ゲット平 均値の差	ゲット平 均値の差 の標準誤 差	割合%	卜平均值	ト標準偏 差	割合%	卜平均值	ト標準偏 差
1	_N00	N0: [D]-[C]-48.3264 (SE=299.0199),[D] 56.10756 (N=344,S=171.8592), [C]104.434 (N=947,S=244.6984) SEI="1"	N00: [D]-[C]-75.6604 (SE=358.6228),[D] 82.765 (N=200,S=214.8141), [C]158.4254 (N=623,S=287.1675) JUKYO="3"," ","4","5","7"	-75.6604	358.6228	32.31	82.765	214.8141	45.11	158.4254	287.1675	-75.6604	358.6228	32.31	82.765	214.8141	45.11	158.4254	287.1675
2	_N01	N0: [D]-[C]-48.3264 (SE=299.0199),[D] 56.10756 (N=344,S=171.8592), [C]104.434 (N=947,S=244.6984) SEI="1"	N01: [D]-[C]18.46605 (SE=64.5786),[D] 19.08333 (N=144,S=64.10186), [C]0.617284 (N=324,S=7.832455) JUKYO="2","1","6"	18.46605	64.5786	23.26	19.08333	64.10186	23.46	0.617284	7.832455	-48.3265	299.0199	55.57	56.10756	171.8592	68.57	104.434	244.6984
3	_N10	N1: [D]-[C]130.5538 (SE=386.6487),[D] 221.5055 (N=275,S=311.1448), [C]90.95161 (N=434,S=229.5346) SEI="2"	N10: [D]-[C]22.55774 (SE=99.96399),[D] 24.82857 (N=105,S=93.59675), [C]2.270833 (N=240,S=35.10623) JUKYO="1","2","6","7"	22.55774	99.96399	16.96	24.82857	93.59675	17.38	2.270833	35.10623	-34.9847	273.0495	72.54	48.79287	157.6468	85.95	83.77761	222.9429
4	_N11	N1: [D]-[C]130.5538 (SE=386.6487),[D] 221.5055 (N=275,S=311.1448), [C]90.95161 (N=434,S=229.5346) SFL="2"	N11: [D]-[C]142 3226 (SE=455.1069),[D] 342.9824 (N=170,S=335.4804), [C]200.6598 (N=194,S=307.5309) JUKYQ="5" " " "3" "4"	142.3226	455.1069	27.46	342.9824	335.4804	14.05	200.6598	307.5309	29.39108	351.9012	100.00	129.5881	257.2506	100.00	100.197	240.1178

10.3.7 データセット出力

は WORK._NODETAB という名前です。

outtab=パラメータに指定したデータセットに画面出 カイメージをデータセット出力します。デフォルト

(分類木モデルの場合)

outtab=出力デ・	ータセ	ェット		
変数名	タイプ	長さ	内容	備考
no	数値	8	順序	ターゲット出現率の小さい/大きい順
termnode	文字	可変	終端ノード番号	"_Nxxxx"の値。ただしxxxxは0/1の文字列
lvl1 lvlk	文字	可変		1階層目~k階層目のノード
N_PCT	数値	8	件数構成比率	
TARG_N_PCT	数値	8	ターゲット再現率	
CONF_PCT	数値	8	ターゲット出現率	
CUM_N_PCT	数値	8	累積件数構成比率	
CUM_TARG_PCT	数値	8	累積ターゲット再現率	
CUM_CONF_PCT	数値	8	累積ターゲット出現率	
TEST_N_PCT	数値	8	検証データの件数構成比率	
TEST_TARG_N_PCT	数値	8	検証データのターゲット再現率	
TEST_CONF_PCT	数値	8	検証データのターゲット出現率	test= パラメータを指定した場合に作成され
TEST_CUM_N_PCT	数値	8	検証データの累積件数構成比率	る変数
TEST_CUM_TARG_PCT	数値	8	検証データの累積ターゲット再現率	
TEST_CUM_CONF_PCT	数値	8	検証データの累積ターゲット出現率	

(回帰木モデルの場合)

outtab=出力データセット

変数名	タイプ	長さ	内容	備考
no	数値	8	順序	ターゲット出現率の小さい/大きい順
termnode	文字	可変	終端ノード番号	"_Nxxxx"の値。ただしxxxxは0/1の文字列
lvl1 lvlk	文字	可変		1階層目~k階層目のノード
N_PCT	数値	8	件数構成比率	
MEAN	数値	8	ターゲット平均値	
STD	数値	8	ターゲット標準偏差	
CUM_N_PCT	数値	8	累積件数構成比率	
CUM_MEAN	数値	8	累積ターゲット平均値	
CUM_STD	数値	8	累積ターゲット標準偏差	
TEST_N_PCT	数値	8	検証データの件数構成比率	
TEST_MEAN	数値	8	検証データのターゲット平均値	
TEST_STD	数値	8	検証データのターゲット標準偏差	test= パラメータを指定した場合に作成され
TEST_CUM_N_PCT	数値	8	検証データの累積件数構成比率	る変数
TEST_CUM_MEAN	数値	8	検証データの累積ターゲット平均値	
TEST_CUM_STD	数値	8	検証データの累積ターゲット標準偏差	

(分類木アップリフトモデルの場合)

outtab-西 ハ ナ-	ーツゼ	ィット		
変数名	タイプ	長さ	内容	備考
no	数值	8	順序	ターゲット出現率の小さい/大きい順
termnode	文字	可変	終端ノード番号	"_Nxxxx"の値。ただしxxxxは0/1の文字列
lvl1 lvlk	文字	可変		1階層目~k階層目のノード
D_TOT_N	数値	8	総件数[処理群]	
D_TARG_N	数値	8	総ターゲット件数[処理群]	
C_TOT_N	数値	8	総件数[対照群]	
C_TARG_N	数値	8	総ターゲット件数[対照群]	
D_N	数値	8	件数[処理群]	
D_N_PCT	数値	8	件数構成比率[処理群]	表示項目
D_TARG_N	数値	8	ターゲット件数[処理群]	
D_TARG_N_PCT	数値	8	ターゲット再現率[処理群]	表示項目(detai=Yの場合のみ)
D_CONF_PCT	数値	8	ターゲット出現率[処理群]	表示項目
C_N	数値	8	件数[対照群]	
C_N_PCT	数値	8	件数構成比率[対照群]	表示項目
C_TARG_N_PCT	数値	8	ターゲット再現率[対照群]	表示項目(detai=Yの場合のみ)
C_CONF_PCT	数値	8	ターゲット出現率[対照群]	表示項目
DIF_CONF_PCT	数値	8	ターゲット出現率の差([処理群]-[対照群])	表示項目
DIF_SE_PCT	数値	8	ターゲット出現率の差の標準誤差	表示項目(detai=Yの場合のみ)
D_CUM_N	数値	8	累積件数[処理群]	
D_CUM_N_PCT	数値	8	累積件数構成比率[処理群]	表示項目
D_CUM_TARG_N	数値	8	累積ターゲット件数[処理群]	
D_CUM_TARG_N_PCT	数値	8	累積ターゲット再現率[処理群]	表示項目(detai=Yの場合のみ)
D_CUM_CONF_PCT	数値	8	累積ターゲット出現率[処理群]	表示項目
C_CUM_N	数値	8	累積件数[対照群]	
C_CUM_N_PCT	数値	8	累積件数構成比率[対照群]	表示項目
C_CUM_TARG_N	数値	8	累積ターゲット件数[対照群]	
C_CUM_TARG_N_PCT	数値	8	累積ターゲット再現率[対照群]	表示項目(detai=Yの場合のみ)
C_CUM_CONF_PCT	数値	8	累積ターゲット出現率[対照群]	表示項目
CUM_DIF_CONF_PCT	数値	8	累積ターゲット出現率の差([処理群]-[対照群])	表示項目(detai=Yの場合のみ)
CUM_DIF_SE_PCT	数値	8	累積ターゲット出現率の差の標準誤差	表示項目
TEST_D_TOT_N	数値	8	検証データの総件数[処理群]	
TEST_D_TARG_N	数値	8	検証データの総ターゲット件数[処理群]	toot= パラメータを指定した提合に作成され
			(途中省略)	る変数(上記と同じ項目名に接頭辞 TEST_ がつく)
TEST_CUM_DIF_SE_PCT	数値	8	検証データの累積ターゲット出現率の差の標準誤差	

(回帰木アップリフトモデルの場合)

outtab-エリフ		<u> </u>		10t-
変数名	タイプ	長さ	内容	備考
no	数値	8	順序	ターゲット出現率の小さい/大きい順
termnode	文字	可変	終端ノード番号	<u>"_Nxxxx"の値。ただしxxxxは0/1の文字列</u>
lvl1 lvlk	文字	可変		1階層目~k階層目のノード
D_TOT_N	数値	8	総件数[処理群]	
C_TOT_N	数値	8	総件数[対照群]	
D_N	数値	8	件数[処理群]	
D_N_PCT	数値	8	件数構成比率[処理群]	表示項目
D_MEAN	数値	8	ターゲット平均値[処理群]	表示項目
D_STD	数値	8	ターゲット標準偏差[処理群]	表示項目(detai=Yの場合のみ)
C_N	数値	8	件数[対照群]	
C_N_PCT	数値	8	件数構成比率[対照群]	表示項目
C_MEAN	数値	8	ターゲット平均値[対照群]	表示項目
C_STD	数値	8	ターゲット標準偏差[対照群]	表示項目(detai=Yの場合のみ)
DIF_MEAN	数値	8	終端ノードのターゲット平均値の差([処理群]-[対照群])	表示項目
DIF_SE	数値	8	終端ノードのターゲット平均値の差の標準誤差	表示項目(detai=Yの場合のみ)
D_CUM_N	数値	8	累積件数[処理群]	
D_CUM_N_PCT	数値	8	累積件数構成比率[処理群]	表示項目
D_CUM_MEAN	数値	8	累積ターゲット平均値[処理群]	表示項目
D_CUM_STD	数値	8	累積ターゲット標準偏差[処理群]	表示項目(detai=Yの場合のみ)
C_CUM_N	数値	8	累積件数[対照群]	
C_CUM_N_PCT	数値	8	累積件数構成比率[対照群]	表示項目
C_CUM_MEAN	数値	8	累積ターゲット平均値[対照群]	表示項目
C_CUM_STD	数値	8	累積ターゲット標準偏差[対照群]	表示項目(detai=Yの場合のみ)
CUM_DIF_MEAN	数値	8	終端ノードのターゲット平均値の差([処理群]-[対照群])	表示項目
CUM_DIF_SE	数値	8	終端ノードのターゲット平均値の差の標準誤差	表示項目(detai=Yの場合のみ)
TEST_D_TOT_N	数値	8	検証データの総件数[処理群]	
TEST_C_TOT_N	数値	8	検証データの総件数[対照群]	
			(途中省略)	る変数(上記と同じ項目名に接頭辞 TEST_ がつく)
TEST_CUM_DIF_SE	数値	8	検証データの終端ノードのターゲット平均値の差の標準誤差	

10.3.8 コマンド実行モードでの注意

べて削除されます。

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす

また、以下のユーザ定義フォーマットがWORKライ

ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$NODE_C \$NODE_D \$_ORDER \$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&は数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

nobs zketa e_name e_type _errormsg

10.4 モデルの管理

モデ	ルロード 指定画面			×							
	モデルの管理										
	名前	作成日時	۶Ł								
	TEST_tree2 TEST_tree2y2 tree2y2 tree2y TEST_tree2y TEST_tree tere	2016/08/12 22:33 2016/08/02 16:14 2016/07/30 01:45 2016/07/30 01:45 2016/07/30 01:36 2016/07/29 09:52 2016/07/29 09:46	[TREESCORE] %dmt_treescore(model=model_tree2,data=testdata.TEST_DATA,outmode [TREESCORE] %dmt_treescore(model=model_tree2y2,data=testdata.TEST_DATA,outmc [TREE] %dmt_tree(data=data.SMP_DATA(where=(DM="1")).control=controlSAMP_DA [TREE] %dmt_tree(data=data.SAMP_DATA(where=(DM="1")).control=controlSAMP_DA [TREESCORE] %dmt_treescore(model=model_tree2y,data=testdata.TEST_DATA,outmoc [TREESCORE] %dmt_treescore(model=model_tree,data=testdata.TEST_DATA,outmodel [TREE] %dmt_tree(data=data.SAMP_DATA,y=flg,target="1",x=sei nenrei jukyo kazoku_k								
	۲ <u>–</u> ۳	表示	名前の変更 削除 戻る								

10.4.1 概要

「ツリーモデル作成」、「ツリーの枝刈り」、「ツリーの枝接 ぎ」、「予測値修正」の各画面で作成したツリーモデル を操作(表示・名前の変更・削除)します。 この機能はマクロモジュールには含まれていません。 GUI実行モードでのみ指定可能です。

メモ欄の最初の鍵カッコは以下の画面で作成された ことを表します。

[TREE] ... ツリー作成 [TREESCORE] ... モデル予測値修正 [TREECUT] ... ツリーの枝刈り [TREEADD] ,,, ツリーの枝接ぎ

続いてデータを作成したときに実行したプログラム が記述されています。

10.4.2 操作方法

名前		
作成日時	 , ′	
		۶Ł

リストの上にあるバーをクリックすると、データセットリストを各項目の昇順・または降順で並べ替えることができます。

操作したいモデル名をクリックすると、操作ボタン が表示されますので、表示・名前の変更・削除の操 作を行います。

赤 分析結果データの内容を表示します。

モデルリネーム 指定画面											
モデルの名前変更											
名前	日時										
tree	2016/08/20 13:10	- 1									
必要であればメモを書き込んでくださ											
[TREE] %dmt_tree(data=dataSA nenrei jukyo kazoku kosei gaku	MP_DATA,y=flg,target=″1″,x=sei 🖍										
nenshu DM,dropx=NENSHU	~	- 1									
変更	戻る	:									

名前は半角英数字で22文字以内(TEST_の接頭辞や _CV10などの接尾辞が自動的に付けられる可能性が あるため)に設定してください。(先頭はアルファベ ットまたは_(アンダーバー))

なお、名前の変更は、元の名前を参照している他の 項目(モデル作成画面の入力パラメータ値など)と は自動連動しません。 そのため、再指定が必要にな るなどの影響があります。

削除 データを削除します。

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 10.4 モデルの管理

削除すると、元に戻せません。

(TIPS) 多数のモデルを関連ファイルと一緒にまとめ て削除したい場合は、「設定画面」の「分析ディレクトリ」 の下の「ツリーモデルディレクトリ」「表示」ボタンを押し、 起動するWindowsエクスプローラで行うと便利です。 削除したいデータセット名が書かれたディレクトリ をすべて同時選択してから削除します。
10.5 統計モデル(stat_model)

統計モデル作成画面					×
	統計モデル作成			入力指定の	のリセット
入力データ (*data=)	… 表示 入力検証データ(testdata=)				表示
ターゲット変数 (*y=)	ターゲット値(target=)				
文字タイプ説明変数 (classx=)	·		sort	: btn	
数値タイプ説明変数 (numx=)					
変数選択法 (selection=)					
出力パラメータ (ODS o	output ParameterEstimates=)stat_model_parameters 表示				
予測値付与SASコード	(outcode=) _stat_model_outcode 表示				
[生成コード]					
表示:	するデータ件数の上限				
[[]] // []	□別々の画面に表示	実行	結果 表示	前回 表示	戻る
					×

10.5.1 概要

統計モデル作成(STAT_MODEL)はデータに統計モ デルを適用するための画面です。ターゲット変数が 数値タイプでかつターゲット値が与えられない場合 は線形回帰分析、ターゲット変数が文字タイプの場 合、もしくは数値タイプであってもターゲット値が 与えられた場合は線形ロジスティック分析がモデル 構築に用いられます。

いずれの場合も切片項の有無と説明変数選択および 変数選択における有意確率基準をオプション指定で きます。

パラメータ推計結果データセットと、予測値を付与 するためのSASコードファイルが出力されます。こ のSASコードはコピーして「データ加工」画面の「変 数生成・変換・条件抽出SASステートメント」欄に 張り付けることにより、予測値を付与することに利

用できます。

また、結果表示ボタンを押すと、分析結果リスト、 ゲインチャート (ターゲット値が与えられた場合の み)、比較プロットを表示できます。

統計モデルを採用するのに適切な状況は一般的に以下のとおりです。

・データ件数が数千件以下と少ない場合
 ・ターゲット変数の変動に関して、説明変数間の交互作用効果が少ないと考えられる場合
 ・説明変数とターゲット変数の変動の間に強い線形性(比例性)が認められる場合

注意: SASバージョン9.2以降またはWPSバージョン3.01以降で動作します。

回帰分析モデルでは SASではGLMSELECTプロシ

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 1.1

ジャ、WPSはGLMMODプロシジャ+REGプロシジャ を組み合わせて実行します。 ロジスティックモデルでは LOGISTICプロシジャが 実行されます。

変数選択法は、回帰分析モデルではSASバージョン 9.2以降の場合はSBC基準の変数単位の選択、それ以 外は、文字タイプ説明変数をすべて値ごとにダミー 変数化してから変数選択しているため、文字タイプ 説明変数は値単位、数値説明変数は変数単位の変数 選択結果となります。一方、ロジスティックモデル ではいずれも変数単位の変数選択が行われます。

10.5.2 指定方法

この機能はマクロモジュールに含まれていません。 GUI実行モードでのみ指定可能です。

(必須パラメータ)

以下の5個のパラメータは省略できません。 ただし、回帰モデルを作成する場合はターゲット値 (target=)は指定してはいけません。

また、文字タイプ説明変数(classx=)と数値タイプ説 明変数(numx=)の指定は、いずれか一方の指定があれ ば他方の指定は必須ではありません。

入力データ (data=) ... 入力データセット名の指定. ターゲット変数(y=) ... ターゲット変数名の指定. (単一変数名のみ指定可)

- ターゲット値 (target=)… ターゲット値の指定.(単 ー値のみ指定可、ただし数値タイプの場合のみ、 あるしきい値以上または以下または超または未 満を指定可)回帰モデルを作成する場合はター ゲット値は指定してはいけません。
- 文字タイプ説明変数 (classx=) … 文字タイプ説明変 数リストの指定.(例: a b c) x1-x4 a--z f_: など の省略指定は指定不可.
- 数値タイプ説明変数 (numx=) … 数値タイプ説明変 数リストの指定.(例: a b c) x1-x4 a--z f_: など の省略指定は指定不可.

(オプションパラメータ)

以下の8個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

入力検証データ (testdata=)

- ... モデル検証用データを指定します。
- 切片項 (intercept)

… モデルの切片項パラメータの有無を指定し ます.(「あり」がデフォルト)(※オプション 画面で変更可能)

ロジスティックモデルの最大反復計算回数 (maxiter=100) ... ロジスティックモデルの最尤 法計算の反復回数を指定します.(※オプション 画面で変更可能)

変数選択法 (selection=NONE) ... 変数選択法を選択 します.

(selection=NONE/FORWARD/BACKWARD/ST EPWISE) ただし、SAS9.2以降の回帰分析モデ ルでは、SBC(シュワルツの情報量基準)によ る変数選択法のみ使用できます。

- 説明変数をモデルに入れるときの有意確率基準 (slentry=0.15) … 説明変数をモデルに加えるときの有意確率 基準. 変数選択法を指定した場合に有効.(※オ プション画面で変更可能。SAS9.2以降の回帰分 析モデルでは無効)
- 説明変数をモデルから除くときの有意確率基準 (slstay=0.15) … 説明変数をモデルから除外するときの有意 確率基準.変数選択法を指定した場合に有効. (※オプション画面で変更可能。SAS9.2以降の 回帰分析モデルでは無効)
- 出カパラメータ (ODS output ParameterEstimates=) … パラメータ推計結果リストを出力するデー タセット名を指定.
- 予測値付与SASコード(outcode=) … モデル予測値を 計算するSASステートメントを出力するファイ ル名を指定.

10.5.3 パラメータの詳細

入力データ(data=) 入力データセット名を指定します。このパラメータ は省略できません。例: data=a

入力検証データ (testdata=)

モデル検証用データを指定します。指定された場合 は、「結果表示」ボタンを押した際に作成したモデル がモデル作成データと検証データ(指定があれば) に適用され、ゲインチャート(ロジスティックモデ ルの場合のみ)と比較プロット表示に用いられます。

ターゲット変数 (y=)

ターゲット変数名を指定します。 このパラメータは 省略できません。例: **y=flag**

ターゲット値 (target=)

ロジスティックモデルを作成したい場合、ターゲッ ト変数のターゲット値を指定します。ターゲット変 数が文字タイプの場合にはこのパラメータは省略で きません。ターゲット変数が数値タイプでターゲッ ト変数の大きさを予測する回帰モデルを作成する場 合は指定してはいけません。

ターゲット変数が文字タイプの場合は1種類の値を 指定します。特殊な文字(+,-など)を含まない限り 引用符で囲む必要はありません。(GUI画面からの選 択を行うと自動的に複引用符で値が囲まれます)タ ーゲット変数が数値タイプの場合は1種類の値、もし くはあるしきい値を境とした「以上」、「以下」、「超」、 「未満」のいずれかの範囲を指定可能です。数値変

数タイプで範囲を指定する場合は引用符で囲んでは いけません。

例1: y=flag,target=A (ターゲット変数が文字タイプ変数で、その値"A"をターゲットに指定する場合)
 例2: y=sales,target=1000 (ターゲット変数が数値タイプで、その値1000をターゲットに指定する場合)

例3: y=sales,target=>1000 (ターゲット変数が 数値タイプで、その値1000超をターゲットに指定す る場合)

例4: y=sales,target=>=1000 (ターゲット変数が 数値タイプで、その値1000以上をターゲットに指定 する場合。 target==>1000と指定してもかまいませ ん。)

例5: **y=sales**, target=<1000 (ターゲット変数が 数値タイプで、その値1000未満をターゲットに指定 する場合)

例6: y=sales,target=<=1000 (ターゲット変数が 数値タイプで、その値1000以下をターゲットに指定 する場合。 target==<1000と指定してもかまいませ ん。)

注:文字タイプ変数のターゲット値は、大文字、小 文字が区別される点に注意してください。(変数名は 大文字・小文字の区別はありません。)

文字タイプ説明変数 (classx=)

文字タイプの説明変数を指定します。このパラメー タと数値タイプ説明変数の指定のいずれかは省略で きません。間に1個以上のスペースを入れて、複数の 説明変数を指定可能です。なお、省略指定(-,--,:)と 3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) はサポートされていません。

数値タイプ説明変数 (numx=)

数値タイプの説明変数を指定します。このパラメー タと文字タイプ説明変数の指定のいずれかは省略で きません。間に1個以上のスペースを入れて、複数の 説明変数を指定可能です。なお、省略指定(-,--,:)と 3つの特殊指定

(_ALL_,_NUMERIC_,_CHARACTER_) はサポー トされていません。

切片項 (intercept)

モデルに切片項パラメータを含むか否かを指定しま す.(含む(「あり」)がデフォルト)

ロジスティックモデルの最大反復計算回数 (maxiter=100)

最尤法によるパラメータ推計時の最大反復計算回数 を指定します。反復回数が十分で無い場合、最尤法 によるパラメータ推計は収束に至らない場合があり ます。変数選択を指定した場合は、

各変数選択段階でのパラメータが収束しないまま、 次の変数選択段階に進む場合があります。このよう な場合、このオプションの値を大きくするとパラメ ータ推計結果が収束する場合があります。

変数選択法 (selection=NONE)

変数選択は予測誤差の小さいモデルを作る効果があ ります。回帰モデル、ロジスティックモデル共に、 以下の**3**つの選択法を指定可能です。

前進法(forward)切片項のみ含むモデルから開始し、 モデルに含まれていない説明変数の中でモデルに追 加するための有意確率基準(slentry)を満たす中から 最も説明力の高い説明変数を逐次的にモデルに追加 していく方法。

モデルに追加するための有意確率基準 (slentry) を満 たすとは、slentry値以下の有意確率を意味し、基準を 満たす説明変数が1個も存在しないときモデル構築 は終了します。

後退法(backward)指定した全説明変数を含むモデ ルから開始し、モデルに含まれている説明変数の中 でモデルに残るための有意確率基準(slstay)を満た さない中から最も説明力の低い説明変数を探して逐 次的にモデルから削除していく方法。

モデルに残るための有意確率基準(slstay)を満たさ ないとは、slstay値超の有意確率を意味し、基準を満 たす説明変数が1個も存在しないときモデル構築は 終了します。

前進後退法(stepwise)切片項のみ含むモデルから開 始し、モデルに含まれていない説明変数でモデルに 追加するための有意確率基準(slentry)を満たす中か ら最も説明力の高い説明変数をモデルに追加し、追 加した時点でモデルに含まれている説明変数の中で モデルに残るための有意確率基準(slstay)を満たさ ない説明力の低い説明変数が存在すればモデルから 削除していく方法。追加と削除を交互にチェックす ることからこの名前がつけられています。削除と追 加が連続して発生しないときモデル構築は終了しま す。

説明変数をモデルに入れるときの有意確率基準 (slentry=0.15)

モデルに含まれていない説明変数の中からモデルに 追加するときの有意確率基準を指定します。

説明変数をモデルから除くときの有意確率基準 (slstay=0.15)

モデルに含まれている説明変数の中でモデルから除 くための有意確率基準を指定します。なお、slstayは モデルに残るための基準という意味です。

出力パラメータ(ODS output ParameterEstimates=) パラメータ推計結果リストを指定の名前でデータセ ット出力します。

予測値付与SASコード (outcode=)

モデル予測値を計算するSASステートメントを出力

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 1.1

するファイル名を指定します。 このコードはコピーして「データ加工」画面の「変 数生成・変換・条件抽出SASステートメント」欄に 張り付けることにより、予測値を付与することに利 用できます。

10.5.4 実行例

「結果表示」ボタンを押すと分析結果が表示されま す。

・分析結果アウトプット
 SASの分析出力結果を表示します。
 ・ゲインチャート(ロジスティックモデルの場合のみ)

① モデル作成データのゲインチャート

(ロジスティックモデルの実行例)

② モデル検証データのゲインチャート

・比較プロット

実績値(横軸)対予測値(縦軸)の散布図です。① モデル作成データの散布図(最大5000オブザベーション)

 ② モデル作成データ 予測値の大きさの順に10グル ープ化した後の実績平均 対 予測平均 の散布図
 ③ モデル検証データの散布図(最大5000オブザベー

ション) ④ モデル検証データ 予測値の大きさの順に**10**グル ープ化した後の実績平均 対 予測平均 の散布図

	_
統計モデル作成画面	X
統計モデル作成	し力指定のリセット
入力データ (*data=) SAMP_DATA 表示 入力検証データ (testdata=) TEST_DATA	表示
ターゲット変数 (*y=) flg ターゲット値 (target=) ″ 1″	
文字タイプ説明変数 (classx=)	
数値タイプ説明変数 (numx=)	
変数選択法 💦 なし (none) 🔵 前進法 (forward) 🔵 後退法 (backward) 💿 前進後退法 (stepwise) (selection=)	
出力パラメータ (ODS output ParameterEstimates=) _stat_model_parameters	
予測値付与SASコード(outcode=) _stat_model_outcode	
[生成]	
libname data "G¥Users¥DMT¥Desktop¥samp_data2¥data¥SAMP_DATA"; options nofmter; libname mstore1 "G¥Users¥DMT¥Desktop¥samp_data2"; options mstored sasmstore=mstore1; data SAMP_DATA(rename=(_target=flg)); set data SAMP_DATA; if flg = "then delete; else if flg ne "1"	
表示するデータ件数の上限 10 ∨ 変数ラベルの表示 √ 値ラベルの表示 □ 別々の画面に表示 [ログ]	戻る
	^

実行終了後、 結果表 をクリック。

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 1.1

モデル作成過程の情報が表示されます。

モデル作成データと検証データでのゲインチャート が、別々に表示されます。

モデル作成データと検証データ、それぞれのデータ におけるモデル予測値(横軸)と実際値(縦軸)の 比較プロットが表示されます。最初の図は個々の予 測値単位、2番目の図は予測値を10個のランクに分け た場合の集計単位です。

(回帰モデルの実行例)

Data Bring New Insight to Your Business 10 分析画面 ③モデル作成表示 1.1

_	統計モデル作成画面	x
	統計モデル作成	力指定のリセット
入力データ (*data=)	SAMP_DATA 表示 入力検証データ(testdata=) TEST_DATA	表示
ターゲット変数 (*y=)	kingaku ターゲット値 (target=) …	
文字タイプ説明変数 (classx=)	sei jukyo kazoku_kosei gakureki kin musaki gyoshu shokushu	
数値タイプ説明変数 (numx=)	nenrei nenshu	
	×	
変数選択法 (selection=)	○ なし (none) ○ 前進法 (forward) ○ 後退法 (backward) ● 前進後退法 (stepwise)	
出力パラメータ (ODS d	output ParameterEstimates=)表示	
予測値付与SASコート	ド(outcode=) stat_model_outcode 表示	
[生成コード]		
libname data "C¥U options nofmter; libname mstorel "C options mstored sa %macro regchk; %let ver l=&sysver# ods html body="sta ods output Paramet	Users¥DMT¥samp_data¥data¥SAMP_DATA"; C:¥Users¥DMT¥DMT_TREEV1.3_build20170220"; asmstore=mstore1; %if %eval(&ver1 >= 9.2) %then %do; rat_outputhtml" path="C:¥Users¥DMT¥samp_data¥html¥stat_output"; sterEstimates=outparm_stat_model_parameters;	
	ますみデータ体教の上限 10 🗸 🖌 変数ラベルの表示 🔽 値ラベルの表示 💷	
[n]		戻る
The maximum n NOTE: The data ste real time : 0.02 cpu time : 0.03	record length was 120 ep took : 29 31	^
212 + End of %INCLUDE(le	level 1) C:¥Users¥DMT¥samp_data¥pgm.sas	
NOTE: Submitted st real time : 1:25. cpu time : 1:24	statements took : 5.293 14.531	
		*
		.:

lsers¥DMT¥samp_data¥html¥temp	lstat_outpu	t_201702	222_15	3451¥ST	AT_OU	TPUT.	html		✓ 30X
			The		veter				
			me	wraa	yster				
			The	REGProc	edure				
			Mo	odel: MOC	IEL1				
		Depen	ident va	ariable: ki	ngaku 🕽	入全部	l I		
		Nur	nberofi	Observation	s Read	293			
		Nur	nberofi	Observation	IS Used	293			
		,	Neovás	e Selectio	on: Sten	4			
riable Col17 Entered: R-Square = 0.1109;	and C(p) = 51	7.0005							
			Ana	iysis of Va	riance				
	Source	DF	Sum o	f Squares	Mean Sc	juare F	Value	Pr > F	
	Model	1		10988699	109	99958	160.98	<.0001	
	Error Corrected	1291 Total 1292		88124860		58261			
			Para	meter Est	imates				
	Variable Par	ameter Es	timate	Standard	Error Ty	pe 88	F value	e Pr>F 7 ≥ 0001	
	Col17	236	.73148	18.6	5817 10	988699	160.9	8 <0001	
			Stepwis	e Selectio	on: Step	2			
riable Col7 Entered: R-Square = 0.1595 a	nd C(p) = 420	17743							
			Ana	iysis of Va	riance				
	Source	DF	Sum o	f Squares	Mean Sc	quare F	Value	Pr > F	
	Model	1290	-	15812423	79	06211	122.44	<.0001	
	Corrected '	Total 1292	-	99113559		• 01 0			
	-	_	·						
			Para	me ter Est	imates		-		
	htercent	6.9	23991	a canoaro A c	2735 4	573562	70.6	3 < 0001	
	C0/7	177	.00475	20.4	7974 4	823723	74,7	0 <0001	
	Col17	220	24454	18.3	4734 \$	407457	145.6	8 <0001	
		,	teovés	e Selectio	on: Sten	3			

(途中省略)

モデル作成データと検証データ、それぞれのデータ におけるモデル予測値(横軸)と実際値(縦軸)の 比較プロットが表示されます。最初の図は個々の予 測値単位、2番目の図は予測値を10個のランクに分けた場合の集計単位でプロットされています。

10.5.5 データセット出力

パラメータ推計結果データセットが、出力パラメー タ (ODS output ParameterEstimates=) に指定した 名前で 分析ディレクトリの下の統計モデルディレクトリ 内に出力されます。 表示 を押すと内容が表示され ます。

(ロジスティックモデルの場合)

	-	_stat_m	100	del_pa	rame	ters	
Obs	Variable	ClassVal0	DF	Estimate	StdErr	WaldChiSq	ProbChiSq
1	Interce pt		1	-3.2989	1.3134	6.3085	0.0120
2	jukyo	1	1	-0.4822	0.7924	0.3703	0.5429
3	jukyo	2	1	-1.3703	0.8926	2.3566	0.1248
4	jukyo	3	1	2.8113	0.5678	24.5171	<.0001
5	jukyo	4	1	2.6382	0.5407	23.8094	<.0001
6	jukyo	5	1	2.2015	0.5637	15.2521	<.0001
7	jukyo	6	1	0.2171	0.9177	0.0560	0.8130
8	jukyo	7	0	0			
9	kazoku_kosei	1	1	-1.0238	1.0298	0.9884	0.3201
10	kazoku_kosei	2	1	-0.4107	1.0500	0.1530	0.6957
11	kazoku_kosei	3	1	-1.8739	1.0582	3.1357	0.0766
12	kazoku_kosei	4	1	-1.6592	1.0872	2.3290	0.1270
13	kazoku_kosei	5	0	0			
14	gakureki	1	1	2.4036	0.5870	16.7647	<.0001
15	gakureki	2	1	1.1528	0.5260	4.8027	0.0284
16	gakureki	3	1	-1.2152	0.6000	4.1025	0.0428
17	gakureki	4	1	-1.0064	0.6698	2.2576	0.1330
18	gakureki	5	0	0			
19	shokushu	1	1	0.1692	0.6769	0.0625	0.8026
20	shokushu	2	1	1.3998	0.6332	4.8866	0.0271
21	shokushu	3	1	1.7994	0.6574	7.4917	0.0062
22	shokushu	4	1	1.2799	0.6887	3.4535	0.0631
23	shokushu	5	1	-0.0848	0.6052	0.0196	0.8886
24	sho kush u	6	1	0.3233	0.6145	0.2768	0.5988
25	shokushu	7	0	0			

(回帰モデルの例)

				_stat	_model	_paran	neters2	2			
Obs	Model	Dependent	Step	Variable	Estimate	StdErr	TypeIISS	FValue	ProbF	no	label
1	MODEL 1	kingaku	17	Intercept	-170.10228	44.26822	710245	14.77	0.0001	1	Intercept
2	MODEL 1	kingaku	17	Col1	-1.85610	0.80369	256564	5.33	0.0212	2	nenrei
3	MODEL 1	kingaku	17	Col2	0.21345	0.04532	1067089	22.18	<.0001	3	nenshu
- 4	MODEL 1	kinga ku	17	Col4	40.60216	18.54454	230589	4.79	0.0289	4	sei 2
5	MODEL 1	kingaku	17	Col7	246.25363	26.79374	4063220	84.47	<.0001	5	jukyo 3
6	MODEL 1	kingaku	17	Col8	226.98656	23.35696	4542966	94.44	<.0001	6	jukyo 4
7	MODEL 1	kingaku	17	Col9	199.14785	26.49551	2717556	56.49	<.0001	7	jukyo 5
8	MODEL 1	kingaku	17	Col13	83.12801	23.99742	577215	12.00	0.0006	8	kazoku_kosei 2
9	MODEL 1	kingaku	17	Col17	240.64395	26.18880	4061538	84.43	< 0001	9	gakureki 1
10	MODEL 1	kingaku	17	Col18	116.20895	20.29825	1576644	32.78	< 0001	10	gakureki 2
11	MODEL 1	kingaku	17	Col24	109.78631	62.53433	148262	3.08	0.0796	11	kinmusaki C
12	MODEL 1	kingaku	17	Col28	-58.36997	38.18765	112384	2.34	0.1269	12	gyoshu C
13	MODEL 1	kingaku	17	Col32	37.43542	20.72803	156899	3.26	0.0714	13	gyoshu G
14	MODEL 1	kingaku	17	Col33	-268.74860	156.77546	141354	2.94	0.0870	14	gyoshu H
15	MODEL 1	kinga ku	17	Col35	80.01372	41.73014	176848	3.68	0.0556	15	gyoshu J
16	MODEL 1	kingaku	17	Col41	123,13094	24,17120	1248273	25.95	<.0001	16	shokushu 3

10.5.6 スコアリング用 SAS コード出力

予測値付与SASコード(outcode=) には予測値を付与 するために必要なSASコードが分析ディレクトリの下 のスコアコードディレクトリ内に出力されます。

(ロジスティックモデルの場合)

(回帰モデルの例)

このコードを「データ加工」画面に貼り付ける方法 で利用することにより、新たなデータに予測値をつ けることができます。(ツリーモデルの予測値をデー タにつけるための「予測付与」画面では利用できま せん)

なお、ここで作成したコードは「コード管理」画面 で操作(表示、名前の変更、削除)することができ ます。

11. 分析画面 ④モデル検証

作成したツリーモデルの予測精度を確認します。

11.1 ゲイン・収益(dmt_gainchart)

MT_GAINCHART	指定画面								x
	ゲ	インチ	ヤート	収益	チャート			入力指定の	リセット
入力モデル (model=) 入力データ (data=) where条件 ターゲット変数 (y=) 予測変数名(pred=)			表示 表示 ターゲット値 グループ別集 なし の たし	入力検証モデ (target=) 計	// (test=)		-	表示 sort btn	
グラフの種類(type=)		v منتخر	 ○ 変数(€ わ対表示 () 	sroupvar=)	NODE				
収益チャートのパラメータ 出現する判断が正しい場		D高い方から選 D低い方から選 ● 値	択し、選択先は 択し、選択先は	はターゲットが出ま ターゲットが出ま 〇 変数	見すると判断 見しないと判断		(プラス値を入力)		
出現997世の小歌りのが 表示タイトル (title=) [[生成コード]	500損大単1回 (FF=)	· ● 1ª 座標(直出力データ〔				(∀1JXIE&A)	1)	
「ログロ」表示するデータ体	数の上限	· 3 3	(数ラベルの表示			山々の画面に表	◆ 示 実行	前回表示	戻る
									< v

11.1.1 概要

ゲインチャート・収益チャート(DMT_GAINCHART)は、 分類木モデルの予測ターゲット出現率と実績値(出現 または非出現のいずれか)が与えられたデータセット を入力として、モデルの精度を図示するゲインチャート (CAP曲線とも呼ばれる)またはROCチャートを描き、 精度評価値である AR (Accutacy Ratio)値または ROCエリア (ROC曲線下側面積)を表示するマクロ です。さらに、モデルを業務施策に用いたときの対 象選択件数と損益額の関係を表す収益チャートを描き、 最大収益をもたらす選択件数と最大収益額を表示す ることもできます。ゲインチャート、ROCチャート、 収益チャートは type=パラメータで gain(デフォル ト),roc,profit をそれぞれ与えることにより切り替えます。

(収益チャート(type=profit 指定)について)

モデル予測ターゲット出現率の大きさ順にオブザベ ーションを並べたとき、各オブザベーションに対し て、ある予測ターゲット出現率の大きさをしきい値 として、以下のいずれかの意思決定を行うことを仮 定します。

(1) (モデル予測ターゲット出現率>=しきい値を満 たすオブザベーション) ターゲットは出現するものとみなします。(これを 「**正予測**」(Positive Prediction)と呼びます。)

(2) (モデル予測ターゲット出現率<しきい値を満た すオブザベーション)

ターゲットは出現しないものとみなします。(これを 「**負予測**」(Negative Prediction)と呼びます。)

さて、モデル分析データやモデル検証データでは、 これらの予測が正しかったか誤っていたかが事例と して判明しており、個々のオブザベーションについ て、以下の正誤表の4個のセル、A 正予測真(TP)、B 正 予測偽(FP)、C 負予測偽(FN)、D 負予測真(TN) のい ずれに該当していいるかを判断できます。

(正誤表(Confusion Matrix))

又別	実際	ž F	et.
予測	正事例	負事例	āl
正予測	A 正予測真	B 正予測偽	正予測総件数
(ターゲット出現と予測)	(True Positive)	(False Positive)	A+B
負予測	C 負予測偽	D 負予測真	負予測総件数
(ターゲット非出現と予測)	(False Negative)	(True Negative)	C+D
÷L	正事例総件数	負事例総件数	全体件数
ē.	A+C	B+D	N

しきい値の大きさを変化させると、すべてのオブザ ベーションの所属先が上記4つのセルの中で変化す ることになります。このとき、各セルの件数にそれ ぞれのセルに対応する損益単価(TP=,FP=,TN=,FN= パラメータで与えます)を掛け合わせて合計すると、 そのしきい値を採用したときの施策選択対象件数 (正予測総件数)と期待収益が得られます。

model=,test=パラメータを指定し、モデルデータセットを入力とする場合は、TP=,FP=,TN=,FN=パラメータには、それぞれ定数を与えなければなりませんが、 data=パラメータを指定し、予測スコアと実際値が入ったデータセットを入力とする場合は、

TP=,FP=,TN=,FN=パラメータにはそれぞれの場合に 対応する個々のオブザベーションの損益値を値に持 つ変数名も指定することができます。

さて、何の出現率を予測するモデルを作成したか、 そしてどのような業務施策にモデルを適用するのか によって、その業務施策の選択対象は出現率の大き い方か、小さい方かが決まります。たとえば、ネッ トショップにおける購買率予測モデルをクロスセルや アップセルのコンタクト先を見つけることに用いる場合は 予測購買率の高い方を選択することになります。また、 ローンの貸し倒れ率を予測するモデルを新たな申込 客の与信判断に用いる場合は、貸し倒れ率の小さい方 を選択することになります。

出現率の高い方を選択する場合は、TP=パラメータと FP=パラメータに値を与えます。TP=パラメータには、 例えば、購買するという判断(正予測)が正しかっ た場合に得られる1人当たりの収入金額を正の値で 与えます。そしてFP=パラメータには、購買すると いう判断(正予測)が誤りであった場合に失う1人当 たりの損失額を負の値で与えます。 ー方、出現率の低い方を選択する場合は、TN=パラメ ータとFN=パラメータに値を与えます。TN=パラメー タには、例えば、貸し倒れしないという判断(負予 測)が正しかった場合に得られる1人当たりの収入金 額を正の値で与えます。そしてFN=パラメータには、 貸し倒れしないという判断が誤りであった場合に失 う1人当たりの損失額を負の値で与えます。

11.1.2 指定方法

(コマンド実行モードでの指定)

%dmt_gainchart(help,data=,y=,target= ,pred=_CONF,count=1,model=,test=,type=GAIN ,TP=0,FP=0,TN=0,FN=0 ,groupvar=,groupnum=,relative=N ,ar_rocf=5.3,amountf=comma16.,pctf=7.2 ,dev=GIF,title=,language=JAPANESE ,graph_language=ENGLISH ,outhtml=dmt_gainchart.html,outpath=)

(GUI実行モードでの変更点)

- ・help は指定不可。
- ・count=1 に固定。

 ・TYPE=PROFIT指定の場合は、TP=,FP=を一緒に指定するか、またはTN=,FN=を一緒に指定するか、いずれかの指定のみが許されます。(それ以外の組合せの2つ、または3つ以上を同時に指定できません)
 ・座標値出力データに名前を付けることができます。 (デフォルトはグラフタイプによって、それぞれ _GAIN,_ROC,_PROFIT)

(入力データセットの個々のオブザベーションに付与され た予測値の精度を評価する場合)

以下の3個のパラメータは必須指定です。

入力データ (data=) ... 入力データセット名の指定 (where=(条件式)などのデータセットオプションを指 定可能).

ターゲット変数 (y=) ... ターゲット変数名の指定. ターゲット値 (target=) ... ターゲット値の指定.

以下の4個のパラメータはオプション指定です。(=の 右辺の値はデフォルト値を表しています)

予測変数名 (pred=_CONF) … 予測値変数名の指定. count=1 … 入力データセットのオブザベーションが 集計データである場合の重み変数の指定

グループ単位の表示 (groupvar=) 予測値のランク単位の集計表示 (groupnum=)

(1つのツリーモデルを、モデル作成データのみ、または モデルデータとテストデータ、それぞれに適用した場合 の精度を比較評価する場合)

以下の2個のパラメータを指定します。ただし、test=

Data Bring New Insight to Your Business 11 分析画面 ④モデル検証 11.1 ゲイン・収益(dmt_gainchart)

パラメータは単独指定できません。

入力モデル (model=) … 入力モデルデータセット名 の指定.

入力検証モデル (test=) ... テストデータに対してモ デルを適用したときのモデル形式データ

(グラフの種類を選択するパラメータ)

グラフの種類 (type=GAIN) ... ゲインチャート(type=GAIN)、ROCチャート (type=ROC)、 収益チャート(type=PROFIIT) の切り替えを指定します。デフォルトはゲイン チャート (CAP曲線) です.

(収益チャートのパラメータ)

以下の5個のパラメータは type=PROFIT の場合に のみ有効です。(=の右辺の値はデフォルト値を表し ています)なお、最初の4個のすべてのパラメータを デフォルト0のままにして収益チャートを描いても 無意味です。1個以上のパラメータの値を0以外に指 定して収益チャートを描いてください。(GUI実行モ ードでは、TP=,FP=のペア、またはTN=,FN=のペア のいずれかのみ指定できます。)

出現する判断が正しい場合の収入単価 (TP=0) 出現する判断が誤りの場合の損失単価 (FP=0) 出現しない判断が正しい場合の収入単価 (TN=0) 出現しない判断が誤りの場合の損失単価 (FN=0)… 収益チャートの相対表示 (relative=N)

(その他のパラメータ)

以下の10個のパラメータは任意指定です。(=の右辺の値はデフォルト値を表しています)

help … 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)
AR値、ROCエリア(ROC値)の表示フォーマットの指定 (ar_roof=5.3)
収益値の表示フォーマットの指定 (amountf=comma16.)
百分率の表示フォーマットの指定 (pctf=7.2)
表示タイトル (title=)… 画面出力のタイトルの指定.
(%str,%nrstr,%bquote などの関数で囲んで指定する こと)
言語 (language=JAPANESE)… ログやメッセージ を表示する言語の選択

グラフ表示言語 (graph_language=ENGLISH) … ロ グやメッセージを表示する言語の選択

グラフデバイスの指定 (dev=GIF) ... グラフィックデ バイスの指定.

HTML出力ファイル名 (outhtml=dmt_gainchart.html) (コマンド実行モードでのみ有効)

HTMLファイル出力ディレクトリの指定 (outpath=) (コマ

ンド実行モードでのみ有効)

座標値出カデータ ... 図の座標値をデータ出力しま す。GUI実行環境では名前を指定できますが、 コマンド実行モードでは ゲインチャートの場 合 _gain, ROCチャートの場合 _roc, 収益チャ ートの場合 _profit という固定の名前でWORK ライブラリに自動出力されます。

11.1.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。 例:model=bunseki1

入力検証モデル (test=)

入力モデル形式データセット名を指定します。この 指定はmodel=パラメータと一緒に指定する必要があ ります。

例:test=kensho1

入力データ (data=)

入力データセット名を指定します。データセットオ プションを指定できます。data=を指定する場合は、 同時に、y=, target=(必要であれば), pred=の指定が必 須です。

例:data=a,data=a(where=(DM="1"))

ターゲット変数 (y=)

data= 入力データセットに含まれるターゲット変数 名を指定します。 例: **y=flag**, **y=revenue**

ターゲット値 (target=)

分類木モデルの予測値と実績値を比較検証する場合、 y= ターゲット変数のターゲット値を指定します。回 帰木モデルの検証を行う場合は指定してはいけません。

例:target="1"

なお、引用符で囲まなくても構いません。(自動判断 します)

予測変数名 (pred=_CONF)

入力データセットに含まれる予測ターゲット出現率 を表す変数名を1個~9個まで指定します。 なお、_CONF は分類木モデルの場合の予測変数名デ フォルトとなっています。回帰木モデルの検証の場 合は、回帰木モデルの予測変数名(デフォルトは _MEAN) を指定してください。 例:pred=Treepred1 Treepred2 STAT_pred

グループ単位の表示 (groupvar=)

data=指定の場合に、入力データに含まれる変数を1 個だけ指定します。指定すると、チャートのプロッ ト点が個々のオブザベーション単位から指定変数値 が同じグループ単位の表示に変更されます。(注意: DMTデシジョンツリーV1.2の GROUPNODE=Y パ ラメータ指定は無効になりました。

GROUPVAR=_NODE に置き換えてください。)

予測値のランク単位の集計表示 (groupnum=)

data=指定の場合に、正の整数値を指定します。オブ ザベーションを予測値の大きさに基づくランクにグ ループ化(ビニングとも呼ばれる)し、ランクグル ープ単位の表示に変更します。

AR値、ROCエリア(ROC値)の表示フォーマットの指定 (ar_rocf=5.3)

ゲインチャート、ROC チャートの上部に表示 されるAR 値やROC 面積値の表示フォーマッ トを指定します。

収益値の表示フォーマットの指定 (amountf=comma16.)

収益チャートの上部に表示される収益値の表 示フォーマットを指定します。

百分率の表示フォーマットの指定 (pctf=7.2)

relative=Y を指定した収益チャートの上部に 表示される件数比率の表示フォーマットを指 定します。

グラフ画面表示言語 (graph_language=ENGLISH)

グラフィック出力画面に表示する既定のタイトルや 軸 ラベル 等に 表示 する 言語を指定します。 graph_language=ENGLISH が既定です。※ 現行 WPS ではグラフ上には日本語が表示できませんので、 デフォルトの graph_language=ENGLISH を変更し ないでください。

11.1.4 収益チャートのパラメータの詳細

出現する判断が正しい場合の収入単価 (TP=0, GUI実行モードでは TP=1)

収益チャートにおいて、そのオブザベーションが正 予測真(True Positive)の場合の収入単価を指定します。 デフォルトは0です。任意の正の数値を指定します。 ただし、data=入力データセットと共に指定する場合 は、data=データセットに含まれる収入額を表す変数 名も指定できます。正予測真とは「ターゲットは出 現すると予測して実際も出現した」という正しい予 測状況を意味しています。

出現する判断が誤りの場合の損失単価

(FP=0, GUI実行モードでは FP=-1)

収益チャートにおいて、そのオブザベーションが正 予測偽(False Positive)の場合の損失単価を指定しま す。デフォルトは0です。任意の負の数値を指定しま す。ただし、data=入力データセットと共に指定する 場合は、data=データセットに含まれる損失額を表す 変数名も指定できます。正予測偽とは「ターゲット が出現すると予測したのに実際は出現しなかった」 という予測が誤った状況を意味しています。

出現しない判断が正しい場合の収入単価

(TN=0, GUI実行モードでは TN=1)

収益チャートにおいて、そのオブザベーションが負 予測真(True Negative)の場合の収入単価を指定しま す。デフォルトは0です。任意の正の数値を指定しま す。ただし、data=入力データセットと共に指定する 場合は、data=データセットに含まれる収入額を表す 変数名も指定できます。負予測真とは「ターゲット は出現しないと予測して実際も出現しなかった」と いう正しい予測状況を意味しています。

出現しない判断が誤りの場合の損失単価

(FN=0, GUI実行モードでは FN=-1)

収益チャートにおいて、そのオブザベーションが負 予測偽(False Negative)の場合の損失単価を指定しま す。デフォルトは0です。任意の負の数値を指定しま す。ただし、data=入力データセットと共に指定する 場合は、data=データセットに含まれる損失額を表す 変数名も指定できます。負予測偽とは「ターゲット は出現しないと予測したのに実際は出現した」とい う状況を意味しています。

収益チャートの相対表示 (relative=N)

relative=Y を指定すると、収益チャートの縦軸、横軸 を、絶対値の最大値が±100(符号は絶対値の最大値 の符号)になるように比例変換して表示します。 model=モデルデータと検証データの件数が異なる場 合に指定するとモデルと検証を比較しやすい表示に なります。

例: %dmt_tree(data=samp_data,y=flg,target=1,x=s ei--DM,mincnt=50,maxlvl=10,outmodel=tree1) %dmt_treescore(model=tree1,data=test_data(where =(uniform(1)<0.2)),y=flg,target=1,outmodel=TEST_tr ee1)

%dmt_gainchart(model=tree1,test=TEST_tree1,type =PROFIT,TP=5000,FP=-500)

%dmt_gainchart(model=tree1,test=TEST_tree1,type =PROFIT,TP=5000,FP=-500,relative=Y)

(relative= 指定なし)

11.1.5 GUI 実行モードで有効なパラメータの詳細

座標値出力データ

図の座標値を出力するデータセットに名前をつけま す。(コマンド実行モードでは、WORKライブラリに 決まった名前(type=指定によって、_gain, _roc,_profit のいずれか)で自動出力されます。)

11.1.6 コマンド実行モードで有効なパラメータの詳細

count=1

data= 入力データセットのオブザベーションが集計 データである場合の重み変数名を指定します.集計 データで無い場合はデフォルトcount=1のままにし ておきます.なお、重み変数名をこのパラメータで指 定する場合、pred= パラメータに指定可能な予測値 の数は1個のみになります。また、収益チャートを data=入力データセットから作成する場合もcount=1 にしておかなくてはなりません。(GUI実行モードで は1に固定)例:count=freq

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードでは 指定できません。) 例:%dmt_gainchart(help)

11.1.7 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_gainchart.html

分析結果を保存するHTML出力ファイル名を指定し ます。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

11.1.8 実行例

以下のように、samp_dataの変数flg=1の出現率を基 準とするツリーモデル(tree1)を作成し、test_data にモデルを当てはめたときのモデル形式データセッ ト(TEST_tree1)を作成します。

ただし、例示のため、test_dataについては、

where=(uniform(1)<0.2) をデータセットオプション で指定し、20%ランダム抽出したオブザベーション に対して検証用モデル形式データセットを作成して います。

%dmt_tree(data=samp_data,y=flg,target=1,x=sei--D M,mincnt=50,maxlvl=10,outmodel=tree1) %dmt_treescore(model=tree1,data=test_data(where =(uniform(1)<0.2)),y=flg,target=1,outmodel=TEST_tr ee1)

例1:ゲインチャート(CAP曲線)

%dmt_gainchart(model=tree1,test=TEST_tree1)

ゲインチャート (CAP曲線) における図の縦軸はタ ーゲット再現率 (ターゲット累積件数/全ターゲッ ト件数)、横軸はターゲット予測出現率の大きい順に オブザベーションを選択した累積件数率 (選択件数 /全件数)を表します。model=,test=両パラメータを 指定した場合の完全モデルは検証データ(test=) にお ける完全モデルを表示しています。 タイトルにAR値が表示されます。

例2:ROCチャート(ROC曲線)

%dmt_gainchart(model=tree1,test=TEST_tree1,type =ROC)

ROCチャートにおける図の縦軸はターゲット再現率 (ターゲット累積件数/全ターゲット件数)、横軸は ターゲット予測出現率の大きい順に並べた累積デー タ上の(1-非ターゲット再現率)を表します。ROC曲線 の用語では、ターゲット再現率のことを感度 (Sensitivity),

非ターゲット再現率のことを特異度(Specificity)と呼 ぶことが多いようです。

タイトルにはROCエリア値が表示されます。

なお、ゲインチャート、ROCチャートいずれを描い た場合でも、実行ログにはAR値、ROCエリア値が共 通に表示されます。

例3:収益チャート

%dmt_gainchart(model=tree1,test=TEST_tree1,type =PROFIT,TP=5000,FP=-500)

収益チャートにおける図の縦軸は収益、横軸はター ゲット予測出現率の大きい順、または小さい順にオ ブザベーションを選択した選択件数です。完全モデ ル、ランダムモデルを含み、指定したモデルの最大 収益とそのときの選択件数がタイトルに表示されま す。

上記の例では、flg=1の出現率が高い方からデータを 選択し、選択が正しかった(応答があった)場合は 5,000の収益が得られ、選択が誤っていた(応答が無かった)場合は500の損失がかかるものとして計算した収益が縦軸に表示されています。モデル作成データでは、完全モデルの場合、実際に応答があったオブザベーションのみ(457件)をすべて選択する明らかに収益最大となり、2,285,000となることが示されています。ランダムモデルでは全件(2,000件)をすべて選択すると収益は1,513,500で最大となります。一方、モデル(tree1)を用いた場合は、モデル予測値から大きい順に920件を抽出したときが1,971,000で収益最大となり、検証データ(20%サンプリング)では232件を抽出したときの428,500が収益最大となることがわかります。

例4:relative=Y パラメータの指定 %dmt_gainchart(model=tree1,test=TEST_tree1,type =PROFIT,TP=5000,FP=-500,relative=Y)

relative=Y パラメータを指定すると、縦軸の収益、横軸の件数ともに、相対表示になります。 これにより、データ件数がアンバランスな場合の収 益の変化が相互に比較しやすくなります。

上記の場合、tree1での収益計算結果は検証データへのあてはめ結果とほぼ同じ傾向であることが分かります。

例5:

同じ分析データ(samp_data)で作成したロジスティ ックモデルとツリーモデルの精度を同じ検証データ (test_data)で比較します。

(ロジスティックモデル)

proc logistic data=samp_data outmodel=logistic1; class sei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu DM;

model flg(event="1")= sei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu DM nenrei nenshu/selection=stepwise; run

(ロジスティックモデルの予測値をLOGISTIC_PRED という変数名でout1データに作成) proc logistic inmodel=logistic1;

score data=test_data out=out1(rename=('P_あり 'n=LOGISTIC_PRED));

run;

(ツリーモデルの作成)

%dmt_tree(data=samp_data,y=flg,target=1,

x=sei nenrei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu nenshu DM,

mincnt=50,maxlvl=10,outmodel=tree1)

(out1データに、ツリーモデル予測値をTREE_PRED という変数名で追加したout2データを作成)

%dmt_treescore(model=tree1,data=out1,outscore=o ut2,pred=TREE_PRED)

(ゲインチャートの作成)

%dmt_gainchart(data=out2,y=flg,target=1,pred=LOG ISTIC_PRED TREE_PRED)

GAIN Chart of Created Model for the target: flg="1" in out2 Accuracy Ratio=0.803(LOGISTIC_PRED),0.844(TREE_PRED) CAPTURE Rate of Target 1

例6: groupnum=パラメータの指定

%dmt_gainchart(data=out2,y=flg,target=1,pred=LOG ISTIC_PRED TREE_PRED,groupnum=20)

GAIN Chart of Created Model for the target: flg="1" in out2 [_PRED_RANK grouped] Accuracy Ratio=0.801(LOGISTIC_PRED),0.844(TREE_PRED) CAPTURE Rate of Target 1/1 1/1

予測値の大きさでランキングした20グループに分け たオブザベーション同士をゲインチャートで比較す ると予測値の種類数が異なるモデルが比較しやくす なります。

11.1.9 データセット出力

WORK._GAIN、WORK._ROC、WORK._PROFIT に それぞれゲインチャート、**ROC**チャート、収益チャ ートの座標値(累積構成比率とターゲット再現率な ど)を格納したデータセットを自動出力します。 (GUI実行モードの場合は座標出力データに名前を 付けることができます。)

ゲ1	レ	チャ	 の座	標値	デー	-タ(の1	歹
\mathcal{T}		ナヤ	 の座	:惊胆	テー	- 70	<i>D</i> 1	2

				noin				
			_(gain				
bs	type	tot_N	tot_Pos	TPos_r	rui_N_r	TPos	rui_N	_NODE
1	1.Model(_CONF)	2000	457	0	0		0	
2	1.Model(_CONF)	2000	457	0.170678337	0.044	78	88	_N1101
3	1.Model(_CONF)	2000	457	0.306345733	0.0805	140	161	_N11111
4	1.Model(_CONF)	2000	457	0.4398249453	0.1245	201	249	_N1100
5	1.Model(_CONF)	2000	457	0.5470459519	0.1605	250	321	_N1001
6	1.Model(_CONF)	2000	457	0.6236323851	0.189	285	378	_N11101
7	1.Model(_CONF)	2000	457	0.7330415755	0.238	335	476	_N1110011
8	1.Model(_CONF)	2000	457	0.8074398249	0.2745	369	549	_N11110
9	1.Model(_CONF)	2000	457	0.8468271335	0.3	387	600	_N1110010
10	1.Model(_CONF)	2000	457	0.8905908096	0.341	407	682	_N01111
11	1.Model(_CONF)	2000	457	0.9190371991	0.372	420	744	_N1110001
12	1.Model(_CONF)	2000	457	0.9474835886	0.414	433	828	_N01110
13	1.Model(_CONF)	2000	457	0.9671772429	0.46	442	920	_N001
14	1.Model(_CONF)	2000	457	0.9759299781	0.492	446	984	_N1011
15	1.Model(_CONF)	2000	457	0.9846827133	0.5245	450	1049	_N0110
16	1.Model(_CONF)	2000	457	0.9912472648	0.55	453	1100	_N1110000
17	1.Model(_CONF)	2000	457	1	0.598	457	1196	_N1000
18	1.Model(_CONF)	2000	457	1	0.9025	457	1805	_N000
19	1.Model(_CONF)	2000	457	1	0.9405	457	1881	_N010
20	1.Model(_CONF)	2000	457	1	1	457	2000	_N1010
21	2.Test(_CONF)	2000	456	0	0		0	
22	2.Test(_CONF)	2000	456	0.1688596491	0.044	77	88	_N1101
23	2.Test(_CONF)	2000	456	0.3355263158	0.0895	153	179	_N11111
24	2.Test(_CONF)	2000	456	0.4714912281	0.129	215	258	_N1100
25	2.Test(_CONF)	2000	456	0.5460526316	0.1625	249	325	_N1001
26	2.Test(_CONF)	2000	456	0.6425438596	0.192	293	384	_N11101
27	2.Test(_CONF)	2000	456	0.7127192982	0.237	325	474	_N1110011
28	2.Test(_CONF)	2000	456	0.774122807	0.2675	353	535	_N11110
29	2.Test(_CONF)	2000	456	0.8114035088	0.292	370	584	_N1110010
30	2.Test(_CONF)	2000	456	0.850877193	0.342	388	684	_N01111
31	2.Test(_CONF)	2000	456	0.8925438596	0.38	407	760	_N1110001
32	2.Test(_CONF)	2000	456	0.9100877193	0.4075	415	815	_N01110
33	2.Test(_CONF)	2000	456	0.9298245614	0.454	424	908	_N001
34	2.Test(_CONF)	2000	456	0.9407894737	0.4905	429	981	_N1011
35	2.Test(_CONF)	2000	456	0.9561403509	0.515	436	1030	_N0110
36	2.Test(_CONF)	2000	456	0.9780701754	0.544	446	1088	_N1110000
37	2.Test(_CONF)	2000	456	0.9868421053	0.59	450	1180	_N1000
38	2.Test(_CONF)	2000	456	0.9868421053	0.898	450	1796	_N000
39	2.Test(_CONF)	2000	456	0.9868421053	0.9355	450	1871	_N010
40	2.Test(_CONF)	2000	456	1	1	456	2000	_N1010
41	3.Perfect Model(MODEL)	2000	457	0	0			
42	3.Perfect Model(MODEL)	2000	457	1	0.2285			
43	4.Perfect Model(TEST)	2000	456	0	0			
44	4.Perfect Model(TEST)	2000	456	1	0.228			
45	5.Random Model	2000	457	0	0			
46	5 Random Model	2000	457	1	1			

type:モデルの種類,tot_N:総事例件数,tot_Pos: ターゲット事例総件数,TPos_r:ターゲット再現率 (縦軸),rui_N_r:累積選択率(横軸),TPos:正事 例累積件数,rui_N:累積件数,_NODE:ノード番号

ROCチャートの座標値データの例

W0MTVsexmp_dataWintiWrempV_ROChtml V 00X Dob type vokojiku Translava Theg_r NODE Dob type vokojiku Vokol Theg_r NODE 1 Model_CONF 0.064808814 0.170678337 0.9935191186 N1101 1 Model_CONF 0.0604408814 0.170678337 0.9935191186 N1101 1 Model_CONF 0.040442578 0.9839054743 N001 0.933957421 N001 5 Model_CONF 0.010271297 0.623023581 0.9932579303 N11101 7 Model_CONF 0.18042770 0.7330415755 0.908159723 N111001 1 Model_CONF 0.180247730 0.4803441348 N111001 1 Model_CONF 0.180247730 0.4803441348 N1111001 1 Model_CONF 0.180247730 0.48021338 0.81757515 N1111001 1 Model_CONF 0.180247730 0.480213480 N0111 N111001 1 Model_CONF 0.180247730
Label Nodel_Colf
L Drome Nore Nore Nore Nore 1 Model_CONF) 0004400814 0.10078733 0903519118 N1011 2 1.0004_CONF) 0004400814 0.10078733 0903519118 N1011 3 1.0004_CONF) 0.004400814 0.10078733 0903519118 N1011 4 1.0004_CONF) 0.00414257 0.4308249453 0.9088917693 N1010 5 1.0004_CONF) 0.001122719 0.023032510 0.93972723 N10101 7 1.0004_CONF) 0.00130277 0.73041575 0.908314134 N110101 9 1.0004_CONF) 0.100272130 0.808217033 0.80197228 N110101 10 1.0004_CONF) 0.100277130 0.808217030 0.80197288 N110101 11 1.0004_CONF) 0.100277130 0.801213080 N01111 N1001 N1001 N1001 N10101
LCCC Display Display Display Pickaria Pi
Obs type yokojiku TPos_r THeg_r _NODE 1 Model_COMF) 0 0 1 1 2 Model_COMF) 0.006480814 0.170673337 0.9935191186 NI101 3 Model_COMF) 0.00164808014 0.170673337 0.9983501434 NI1111 4 Model_COMF) 0.031082267 0.393244453 0.9883501443 NI1101 5 Model_COMF) 0.000272479 0.230232851 0.93927703 NI11001 6 Model_COMF) 0.000272479 0.230232851 0.93972703 NI11001 7 Model_COMF) 0.1804277 0.530323851 0.380341355 0.1111011 1 Model_COMF) 0.309724708 0.840871355 0.84195723 NI110011 1 Model_COMF) 0.39761300 0.841957245 NI110011 1 Model_COMF) 0.380761390 0.951328501 N011 1 Model_COMF) 0.380761390 0.951328501 N0111 1 Model
Obs Spec yskopiku TPe_r Nieg_r Nieg_r Nieg 1 Model_CONF 0.064400314 0.17057337 0.992519186 .N1011 3 1.Model_CONF 0.031082507 0.396354453 0.992519186 .N1111 4 Model_CONF 0.0311082270 0.43924453 0.986319783 N1001 5 1.Model_CONF 0.040142570 0.43923358 0.93395742 .N1011 6 1.Model_CONF 0.64704570 0.847045516 0.93395742 .N1011 7 1.Model_CONF 0.169324270 0.7330415755 0.9086195723 .N111011 8 1.Model_CONF 0.169324270 0.7330415755 0.9086195723 .N111011 9 Model_CONF 0.169247730 0.84637133 0.833441346 .N11101 1 Model_CONF 0.175242438 0.890509781 0.8321757155 .N11101 1 1.Model_CONF 0.382047969 0.991247248 .059068774 .N11001 1 1.Model_CONF 0.47831
1 Model_CONF) 0 0 1 1 Model_CONF) 0.004480814 0.170537 0.99519186 N1101 3 Model_CONF) 0.004480814 0.170537 0.995191186 N1101 4 Model_CONF) 0.0044808214 0.4386244453 0.986397421 N1101 5 Model_CONF) 0.0460142578 0.4396244453 0.9868917893 N1101 6 Model_CONF) 0.0460142578 0.4396244453 0.989727803 N1101 6 Model_CONF) 0.0460142578 0.820323851 0.939727803 N1101 7 Model_CONF) 0.198242778 0.803341346 N11101 8 Model_CONF) 0.1782242788 0.84950206 0.83341346 N11101 9 Model_CONF) 0.1782242788 0.84950206 0.83341346 N111001 11 Model_CONF) 0.399761309 0.970174268 N0401 N041 14 Model_CONF) 0.8707529781 0.81285747 N0110 N011
1 Model_CONF) 0.004408814 0.17067837 993519186 M1101 1 Model_CONF) 0.005085060 0.30545733 993519146 M1101 4 Model_CONF) 0.0311062307 0.438246453 0.963091494 M1101 5 Model_CONF) 0.040142370 0.438246453 0.9680917693 M1100 5 Model_CONF) 0.06271297 0.23323815 0.939277303 M1101 7 Model_CONF) 0.05271297 0.23323815 0.93927303 M1101 7 Model_CONF) 0.15655625 0.074098240 0.83341436 M11111 9 Model_CONF) 0.1380427730 0.8466271335 0.8619572252 M111001 10 Model_CONF) 0.1380427738 0.846757199 0.70014426 M11101 11 Model_CONF) 0.3869261369 0.947172429 6.960218691 M011 12 Model_CONF) 0.3867641390 0.9772429 6.9602136831 M011 13 Model_CONF) 0.3862047580 <td< th=""></td<>
3 1.Model_CONF) 0.013008500 0.30634733 9803901491 M11111 4 Model_CONF) 0.010102070 0.398244953 9808391495 M11111 5 Model_CONF) 0.060142570 0.5470545510 0.9539657421 M1001 6 Model_CONF) 0.060142570 0.547055510 0.9308179723 M11001 7 Model_CONF) 0.013042771 0.7330415755 0.9308199723 M11001 8 Model_CONF) 0.013042771 0.7330415755 0.93081997220 M11001 9 Model_CONF) 0.1093042770 0.7330415755 0.93081997220 M11001 9 Model_CONF) 0.72624236 0.80003980 0.8217757155 M111001 10 Model_CONF) 0.259945510 0.910477435880 0.7440051447 M111001 11 Model_CONF) 0.259945510 0.91047742580 0.74001141 M11000 12 Model_CONF) 0.25994714190 0.970772480 0.50068674 M011 15 Model_CONF) <t< th=""></t<>
1 Model_CONF) 0.031062207 0.398284453 0.9868917685 M100 5 M.Model_CONF) 0.040022475 0.390227803 M1100 6 M.Model_CONF) 0.040022476 0.23023051 0.399277803 M11001 7 M.Model_CONF) 0.1605232051 0.393277803 M11001 7 M.Model_CONF) 0.1804277 0.23023051 0.399272703 M110011 8 1.Model_CONF) 0.18042773 0.848057135 0.84195723 M110011 9 1.Model_CONF) 0.39024245 0.880341348 M111001 11 M.Model_CONF) 0.390761308 0.470057155 M01111 11 M.Model_CONF) 0.3802647950 0.98025734 M110001 12 M.Model_CONF) 0.3802647950 0.98025734 M11001 13 M.Model_CONF) 0.3802647950 0.9805734 M11001 14 M.Model_CONF) 0.48027130 0.617052447 M1100 14 M.Model_CONF) 0.48027130 0.6310286504
6 1.Model_CONF) 0.647045916 0.833985742 [M1001 6 M.Model_CONF) 0.06712197 0.23323851 0.93372303 [M11011] 7 1.Model_CONF) 0.09304277 0.730415755 0.906195723 [M110011] 8 1.Model_CONF) 0.165558852 0.8074392249 0.833441348 [M11101] 9 1.Model_CONF) 0.136427738 0.8468271335 0.8416972282 [M11001] 10 1.Model_CONF) 0.1362427738 0.8468271335 0.8416972282 [M11001] 11 1.Model_CONF) 0.336427139 0.84087138 0.849872882 [M11001] 12 1.Model_CONF) 0.336247395 0.874939781 0.65132867 [M1001] 13 1.Model_CONF) 0.382047895 0.9142484 0.5808734 [M11000] 14 1.Model_CONF) 0.382047895 0.9142484 0.5808734 [M11000] 14 1.Model_CONF) 0.47933130266 0.9142484 0.5808734 [M11000] 15 1.Model_CONF) 0.479
6 1.ModeL_CONF) 0.602/2167 0.622632851 0.539727803 LI1101 7 ModeL_CONF) 0.61805477 0.324632851 0.539727803 LI11011 8 1.ModeL_CONF) 0.1186556822 0.8074398249 0.8833441346 LI11011 9 1.ModeL_CONF) 0.1186556822 0.8074398249 0.8833441346 LI11101 10 1.ModeL_CONF) 0.1782242383 0.880580096 0.8817572522 LI110010 11 1.ModeL_CONF) 0.1782242383 0.880580096 0.8801757815 LW111001 12 1.ModeL_CONF) 0.1782242383 0.8902138981 LW111001 13 ModeL_CONF) 0.389781305 0.44107724280 0.590235897 LW1110 14 1.ModeL_CONF) 0.4892047130 0.8117852041 LW110001 14 1.ModeL_CONF) 0.489217150 0.912472480 0.59068734 LV110000 15 1.ModeL_CONF) 0.479317355 1 0.52077162345 LW11000 16 1.ModeL_CONF) 0.4792217 0
1 ModeL_CONF) 0.9384277 0.733041755 0.908619572 _M110011 1 ModeL_CONF) 0.13042773 0.849527135 0.84957232 _M110010 10 1 ModeL_CONF) 0.130427736 0.84957135 0.84957232 _M110010 10 1 ModeL_CONF) 0.130427736 0.84957135 0.849572322 _M110010 11 1 ModeL_CONF) 0.250948153 0.947435586 0.744005147 _M0110 12 1 ModeL_CONF) 0.250948153 0.947435586 0.744005147 _M0110 13 1 ModeL_CONF) 0.38071919 0.97772426 0.960138981 _M001 14 1 ModeL_CONF) 0.382047595 0.9474827486 0.5060573 _M11000 16 1 ModeL_CONF) 0.382047595 0.947427486 5.9062733 _M11000 16 1 ModeL_CONF) 0.832047595 0.948627133 0.11752744 _M010 17 1 ModeL_CONF) 0.832047595 0.948627133 0.11722487 _M010 18 1 ModeL_CONF) 0.832047595 0.94127486 S5006973 _M11000 19 1.ModeL_CONF)
8 1 ModeL_CONP) 0.0874398249 0.883341434 _M11110 9 IModeL_CONP) 0.0874398249 0.88334134 _M1110 10 1.ModeL_CONP) 0.17224238 0.8905980396 0.827175765 _M0111 11 1.ModeL_CONP) 0.255994315 0.919037190 0.790019426 _M1110001 12 1.ModeL_CONP) 0.255994315 0.9474435586 0.7440051847 _M0111 13 1.ModeL_CONP) 0.325594315 0.947472429 0.890213891 _M011 14 1.ModeL_CONP) 0.482047590 0.848627133 0.817452041 _M0110 16 1.ModeL_CONP) 0.4783971355 1 0.521062045 _M11000 17 1.ModeL_CONP) 0.4783971355 1 0.521062045 _M11000 18 1.ModeL_CONP) 0.877513 1 0.521062045 _M1100 21 1.ModeL_CONP) 0.977124 0.981106216 _M1101 22 2.TestL_CONF) 0.160839722 0.35525156 0.98106216 _M1110
9 1.McdeL_CONF) 0.180427738 0.8468271355 0.8619572282 _M1110010 10 1.McdeL_CONF) 0.22242365 0.8900966 0.821757515 _M01111 11 1.McdeL_CONF) 0.239806574 0.9190271991 0.7900194426 _M110001 12 1.McdeL_CONF) 0.399761309 0.9671772428 0.6902130691 _M01 13 1.McdeL_CONF) 0.349774130 0.9752297781 0.8513283007 _M101 14 1.McdeL_CONF) 0.349674153 0.9474272480 0.5500689734 _M110000 14 1.McdeL_CONF) 0.490371355 1 0.520162865 _M000 17 1.McdeL_CONF) 0.932775113 1 0.771224887 _M010 14 1.McdeL_CONF) 0.9071245231 0.1680584401 0.922764747 _M1110 12 2.TestL_CONF 0.0071245231 0.168058441 0.922764747 _M1110 12 2.TestL_CONF 0.047245204 0.94124281 0.971269291 _M1100 12 2.TestL_CONF
10 1.ModeL_CONF) 0.8395500096 0.8217757615 _N01111 11 1.ModeL_CONF) 0.250948153 0.947485588 0.7440051447 _N11001 12 1.ModeL_CONF) 0.3097861309 0.9471472429 0.6902136691 _N001 14 1.ModeL_CONF) 0.3886741493 0.971772429 0.6902136691 _N001 15 1.ModeL_CONF) 0.3886741493 0.9716772429 0.6902136691 _N011 16 1.ModeL_CONF) 0.3882047590 0.8486827133 0.5117852041 _N010 16 1.ModeL_CONF) 0.8382047590 0.8486827133 0.5117852041 _N010 17 1.ModeL_CONF) 0.4789371355 1 0.521682645 _N1000 18 1.ModeL_CONF) 0.87022817711 1 0.77124887 _N010 21 2.TestL_CONF) 0 0 0 1 22 2.TestL_CONF) 0.168583782 0.35562516 0.89166216 _N1110 23 2.TestL_CONF) 0.4962227879 0.4492281
11 1
11 1
13 1 Model_CONF) 0.3977861309 0.9671772429 0.8902138691 MO11 14 1 Model_CONF) 0.3882047550 0.984627130 0.617352081 MO11 15 1 Model_CONF) 0.3882047550 0.991247284 0.580680734 M111000 16 1 Model_CONF) 0.479307135 0.521062045 M11000 17 1 Model_CONF) 0.479307135 1 0.52062045 M1000 18 1 Model_CONF) 0.8738228127 1 0.52062045 M1000 19 1 Model_CONF) 0.928775113 1 0.77122488 N000 20 1 Model_CONF) 0.928755113 1 0.77124487 N010 21 2.TestL_CONF) 0.071243523 0.168586491 0.9926756477 M1101 22 2.TestL_CONF) 0.071243523 0.168586491 0.9926756477 M1101 23 2.TestL_CONF) 0.06802597 0.1712712218 N11001 0.997772021 N11001 26 2.TestL_CONF) 0.068025967 0.47
14 1 Model_CONF) 0.348714153 0.9755299731 0.651325807 M101 15 1 Model_CONF) 0.349247950 0.94492133 0.611525041 M011 16 1 Model_CONF) 0.4193130260 0.9912472848 0.5806869734 M1110000 17 1 Model_CONF) 0.479371355 1 0.521062845 M1000 18 1 Model_CONF) 0.428271731 1 0.221062845 M1000 19 1 Model_CONF) 0.92875513 1 0.2771274807 M010 20 1.Model_CONF) 0.42037143 0.180577173 M010 21 Z.TestL_CONF) 0.928756447 M111 22 Z.TestL_CONF) 0.0163393742 0.355263156 0.931606216 M1111 23 Z.TestL_CONF 0.0672489749 0.4714912281 0.971722021 M1010 23 Z.TestL_CONF 0.05925967 0.7127192982 0.9924754782 M1101 24 Z.TestL_CONF 0.05925972820 0.45245859 9.41017478 M1101
15 1.ModeL_CONF) 0.388247959 0.984627133 0.8177552041 _M010 16 1.ModeL_CONF) 0.478937135 1.521062845 _M1000 17 1.ModeL_CONF) 0.478937135 1.521062845 _M1000 18 1.ModeL_CONF) 0.8736220127 1.0283771673 _M000 19 1.ModeL_CONF) 0.8736220127 1.0283771673 _M010 20 1.ModeL_CONF) 0.8736220127 1.07272487 _M010 20 1.ModeL_CONF) 0.071243523 0.1688596491 0.9928756477 _N1101 22 2.TestL_CONF) 0.0162393782 0.35562516 0.9931606218 _N11101 23 2.TestL_CONF) 0.492227979 0.4712281 0.87105291 _N1010 24 2.TestL_CONF) 0.496302328 0.462543856 0.990772021 _N1011 24 2.TestL_CONF) 0.4963023287 0.471242807 0.8821443523 _N111011 24 2.TestL_CONF) 0.178756477 0.771212808 0.8812944523 _N111011
16 1.Model_CONF) 0.4193130266 0.9912472848 0.580668974 _M110000 17 Model_CONF) 0.8731355 1 0.521026846 _M000 18 Model_CONF) 0.8738228127 1 0.1283771875 _M000 19 1.Model_CONF) 0.8738228127 1 0.1283771875 _M000 20 1.Model_CONF) 0.822875113 1 0.071124887 _M1010 21 Zrest(_CONF) 0.907124353 0.1688564491 0.9928756477 _M101 22 Zrest(_CONF) 0.07124353 0.1688564491 0.9928756477 _M101 23 Zrest(_CONF) 0.07124353 0.1688564491 0.9928756477 _M101 24 Zrest(_CONF) 0.06933722 0.335282158 0.9831696216 _M1111 24 Zrest(_CONF) 0.492227979 0.546052816 0.9507772021 _M1001 26 Zrest(_CONF) 0.649242896 0.4942082 0.94349493 _M110101 26 Zrest(_CONF) 0.058372821 <td< th=""></td<>
11 Model_CONF) 0.4789371355 1 0.5210628645 _M1000 11 Model_CONF) 0.428371357 1 0.22371763 _M000 11 Model_CONF) 0.322575113 1 0.0771224887 _M010 20 1.Model_CONF) 0 1 1 0 _M1010 21 2.Test_CONF) 0 0 1 1 0 _M1010 22 2.Test_CONF) 0.0071243523 0.680586491 0.928756477 _M101 23 2.Test_CONF) 0.0072493749 0.4714912281 0.871205291 _M1101 24 2.Test_CONF) 0.0693897283 0.48243896 9410027782 _M1010 24 2.Test_CONF) 0.0695025967 0.7127192982 0.934974033 _M11010 26 2.Test_CONF) 0.085025967 0.7127192982 0.9034974033 _M111001 26 2.Test_CONF) 0.095033 0.614030588 0.841043533 _M1110010 26 2.Test_CONF) 0.197796477
10 1.Mode_CONF) 0.8736228127 1 0.1283771673 N000 10 Mode_CONF) 0.92877513 1 0.071224887 N010 20 M.MdeU_CONF) 0.92877513 1 1 0.771224887 N010 21 T.met_CONF) 0.92877513 1 1 0 _N1010 22 T.met_CONF) 0.0071243523 0.1685696491 0.9928756477 _N1101 22 Z.met_CONF) 0.016335762 0.3355263156 0.983106216 _N11111 23 Z.met_CONF) 0.0469227979 0.44702316 0.9712021 _N1010 24 Z.met_CONF) 0.0869022807 0.45243856 0.990777021 _N1010 24 Z.met_CONF) 0.066025907 0.7127122802 0.98314947093 _N111001 24 Z.met_CONF) 0.17675477 0.74422807 0.8821243523 _N111001 24 Z.met_CONF) 0.19709846 0.808297793 0.89290554 _N11101 24 Z.met_CONF) 0.197098466
19 1.ModeW_CONF) 0.9228775113 1 0.0771224887 N010 20 1.ModeW_CONF) 1 1 1 0 N010 21 2.Test(_CONF) 0.007124523 0.1686556491 0.928756477 M101 22 2.Test(_CONF) 0.007145235 0.648055316 0.938106218 M101 23 2.Test(_CONF) 0.0274897409 0.4714912281 0.9721502591 N1100 24 2.Test(_CONF) 0.409227979 0.5460526316 0.9507772021 N1001 25 2.Test(_CONF) 0.095025907 0.7127124892 0.9034974093 N111011 26 2.Test(_CONF) 0.095025907 0.712712480 0.9314974093 N111011 26 2.Test(_CONF) 0.905025807 0.7127192862 0.9034974093 N111011 26 2.Test(_CONF) 0.197596477 0.7122807 0.882124523 N11101 26 2.Test(_CONF) 0.197098446 0.850877193 0.902901554 N11101 26 2.Test(_CONF) <t< th=""></t<>
20 1 Model_CONF) 1 0 M010 21 2Test(_CONF) 0 0 1 22 2.Test(_CONF) 0.0071243523 0.1688596491 0.9928756477 N1101 23 2.Test(_CONF) 0.016839726 0.335528158 0.8831696218 M1111 24 2.Test(_CONF) 0.049297996 0.47192281 0.97102929 M100 25 2.Test(_CONF) 0.049227979 0.4449286 0.940977622 NF100 26 2.Test(_CONF) 0.049378238 0.84054368 0.94097762 N1101 27 2.Test(_CONF) 0.059078238 0.84243856 0.440427782 N111011 28 2.Test(_CONF) 0.05905097 0.7217129280 0.934974093 N1110011 28 2.Test(_CONF) 0.1178756477 0.77122808 0.881243523 N1110010 29 2.Test(_CONF) 0.19005083 0.81309883 0.813098393 N110010 30 2.Test(_CONF) 0.1907098446 0.850877793 0.802901554 N111
21 2.TestL_CONF 0 0 1 22 2.TestL_CONF 0.0071243523 0.1688596491 0.992276777 N1101 23 2.TestL_CONF 0.0071243523 0.1688596782 0.352563158 0.9821696218 N11111 24 2.TestL_CONF 0.0071243523 0.4688596782 0.3721502591 N11001 25 2.TestL_CONF 0.027849749 0.4714912281 0.9721502591 N11001 26 2.TestL_CONF 0.049227979 0.5466526316 0.9507770201 N1001 26 2.TestL_CONF 0.0969326926 0.4264243856 0.941062762 N111011 27 2.TestL_CONF 0.1986010363 0.114035088 0.8613698673933 N1110011 28 2.TestL_CONF 0.1178756477 0.774123050 0.8621243523 N111001 29 2.TestL_CONF 0.1188010363 0.8114055088 0.8621243553 N111001 30 2.TestL_CONF 0.1917098446 0.850877193 0.802201554 N111101 30 2.TestL_CONF
22 ZTest[_CONF] 0.007124523 0.1686556451 0.9928756477 _M1101 23 ZTest[_CONF] 0.06893726 0.35263156 0.893106216 _M1111 24 ZTest[_CONF] 0.06893726 0.35263156 0.983106216 _M1100 25 ZTest[_CONF] 0.049227979 0.540526316 0.9507772021 _M1001 25 ZTest[_CONF] 0.0965025907 0.7127192982 0.9034974093 _M111011 27 ZTest[_CONF] 0.0965025907 0.7127192982 0.9034974093 _M111011 28 ZTest[_CONF] 0.178754777 0.71427192982 0.9034974093 _M1110011 29 ZTest[_CONF] 0.1917096446 0.850877193 0.802901554 _M11101 30 ZTest[_CONF] 0.1917096446 0.850877193 0.802901554 _M11101
23 2 Test_CONF) 0.0168393782 0.355528156 0.8831696215
24 2.Testi_CONF) 0.0276497409 0.4714912281 0.9721502591 _M1100 25 2.Testi_CONF) 0.049227979 0.546052816 0.9507772021 _M1001 26 2.Testi_CONF) 0.049227979 0.546052816 0.9507772021 _M1001 26 2.Testi_CONF) 0.089378238 0.64242438596 0.9410627782 _M111011 27 2.Testi_CONF) 0.0865025907 0.717129282 0.9034974093 _M1110011 28 2.Testi_CONF) 0.1188610363 0.811405508 0.881243523 _M1110010 29 2.Testi_CONF) 0.119798446 0.86027193 0.803201554 _M1110010 30 2.Testi_CONF) 0.1917098446 0.86027097 0.803201554 _M111010
25 2 Test[_CONF] 0.492227979 0.5460526316 0.9507772021 _M1001 26 Z Test[_CONF] 0.695025807 0.7127192982 0.96245869 0.941067782 _M111011 27 Z Test[_CONF] 0.095025807 0.7127192982 0.9034974083 _M1110011 28 Z Test[_CONF] 0.19756477 0.7742192982 0.9034974083 _M1110011 29 Z Test[_CONF] 0.197054476 0.7742192982 0.9034974083 _M1110010 29 Z Test[_CONF] 0.197054647 0.8771783 0.882124353 _M1110010 20 Z Test[_CONF] 0.197054646 0.850877193 0.8032001554 M11110 20 Z Test[_CONF] 0.197054646 0.850877193 0.8032001554 M11110
26 2.Testi_CONF) 0.0589376238 0.842543856 0.9410621762 _H1101 27 2.Testi_CONF) 0.085025907 0.712719282 0.901497493 _H11011 28 Z.Testi_CONF) 0.1178758477 0.774122807 0.832143523 _H1110 29 Z.Testi_CONF) 0.1186010363 0.811405088 0.8613989637 _H110010 30 Z.Testi_CONF) 0.197998446 0.850877193 0.802201554 _H01111 31 Z.Testi_CONF 0.197098466 0.850877193 0.802201554 _H01111
27 2.Test_CONF) 0.0965025907 [0.7127192982 0.903497495]_H1110011 28 2.Test_CONF) 0.1178756477 0.774122807 0.882124523H111001 29 2.Test_CONF) 0.138601035 0.8114035088 0.861369637H110010 30 2.Test_CONF) 0.191709846 0.850877193 0.8082901554H1110010 31 2.Test_CONF_0.0191709846 0.850877193 0.8082901554H1110010
28 2.Test_CONF) 0.1178756477 0.774122807 0.8821243523
29 2.Test_CONF) 0.1386010363 0.8114035088 0.8613989637 _N1110010 30 2.Test_CONF) 0.191709846 0.850877193 0.8082901554 _N01111 31 2.Test_CONF) 0.292629046 0.850877193 0.8082901554 _N01111
30 2.Test_CONF) 0.1917098446 0.850877193 0.8082901554 N01111
24 0 T-+K CONE) 0 000000040 0 0000400000 0 774070007 114440004
31 2.1688_CONF) 0.228626943 0.8925438596 0.771373057 _N1110001
32 2.Test(_CONF) 0.2590673575 0.9100877193 0.7409326425 _N01110
33 2.Test(_CONF) 0.3134715026 0.9298245614 0.6865284974 _N001
34 2.Test(_CONF) 0.3575129534 0.9407894737 0.6424870466 _N1011
35 2.Test(_CONF) 0.3847150259 0.9561403509 0.6152849741 _N0110
36 2.Test(_CONF) 0.4158031088 0.9780701754 0.5841968912 _N1110000
37 2.Test(_CONF) 0.4727979275 0.9868421053 0.5272020725 N1000
38 2.Test(_CONF) 0.871761658 0.9868421053 0.128238342 _N000
39 2.Test(_CONF) 0.9203367876 0.9868421053 0.0796632124 _N010
40 2.Test(_CONF) 1 1 0 _N1010
41 3.Random Model 0 0 .
42 3.Random Model 1 1 .

type:モデルの種類, yokojiku:1- 非ターゲット再 現率(横軸), TPos_r:ターゲット再現率(縦軸), TNeg_r:非ターゲット再現率, _NODE:ノード番号

収益チャートの座標値データの例

IT¥sa	mp_data¥html¥temp¥_Pf	ROFIT	html						~
_PROFIT									
Obs	type	tot_N	tot_Pos	tot_Neg	cutoff_n	cutoff_profit	cutoff_pred	NODE	
1	1.Model(_CONF)	2000	457	1543	0	0			
2	1.Model(_CONF)	2000	457	1543	88	385000	0.8863636364	_N1101	
3	1.Model(_CONF)	2000	457	1543	161	689500	0.8493150685	_N11111	
4	1.Model(_CONF)	2000	457	1543	249	981000	0.0931818182	_N1100	
5	1.Model(_CONF)	2000	457	1543	321	1214500	0.680555556	_N1001	
6	1.Model(_CONF)	2000	457	1543	378	1378500	0.6140350877	_N11101	
7	1.Model(_CONF)	2000	457	1543	476	1604500	0.5102040816	_N1110011	
8	1.Model(_CONF)	2000	457	1543	549	1755000	0.4657534247	_N11110	
9	1.Model(_CONF)	2000	457	1543	600	1828500	0.3529411765	_N1110010	0
10	1.Model(_CONF)	2000	457	1543	682	1897500	0.243902439	_N01111	
11	1.Model(_CONF)	2000	457	1543	744	1938000	0.2098774194	_N1110001	
12	1.Model(_CONF)	2000	457	1543	828	1967500	0.1547619048	_N01110	
13	1.Model(_CONF)	2000	457	1543	920	1971000	0.097826087	_N001	
14	1.Model(_CONF)	2000	457	1543	984	1961000	0.0625	_N1011	
15	1.Model(_CONF)	2000	457	1543	1049	1950500	0.0615384615	_N0110	
16	1.Model(_CONF)	2000	457	1543	1 100	1941500	0.0588235294	_N1110000	0
17	1.Model(_CONF)	2000	457	1543	1 196	1915500	0.0416666667	_N1000	
18	1.Model(_CONF)	2000	457	1543	1805	1611000	0	_N000	
19	1.Model(_CONF)	2000	457	1543	1881	1573000	0	_N010	
20	1.Model(_CONF)	2000	457	1543	2000	1513500	0	_N1010	
21	2.Test(_CONF)	2000	458	1544	0	0			
22	2.Test(_CONF)	2000	456	1544	88	379500	0.8863636364	_N1101	
23	2.Test(_CONF)	2000	458	1544	179	752000	0.8493150685	_N11111	
24	2.Test(_CONF)	2000	458	1544	258	1053500	0.6931818182	_N1100	
25	2.Test(_CONF)	2000	456	1544	325	1207000	0.680555556	_N1001	
26	2.Test(_CONF)	2000	458	1544	384	1419500	0.6140350877	_N11101	
27	2.Test(_CONF)	2000	456	1544	474	1550500	0.5102040816	_N1110011	
28	2.Test(_CONF)	2000	456	1544	535	1674000	0.4657534247	_N11110	
29	2.Test(_CONF)	2000	458	1544	58.4	1743000	0.3529411765	_N1110010)
30	2.Test(_CONF)	2000	458	1544	684	1792000	0.243902439	_N01111	
31	2.Test(_CONF)	2000	456	1544	760	1858500	0.2098774194	_N1110001	
32	2.Test(_CONF)	2000	456	1544	815	1875000	0.1547619048	_N01110	
33	2.Test(_CONF)	2000	456	1544	908	1878000	0.097826087	_N001	
34	2.Test(_CONF)	2000	456	1544	961	1869000	0.0625	_N1011	
35	2.Test(_CONF)	2000	456	1544	1030	1883000	0.0615384615	_N0110	
36	2.Test(_CONF)	2000	458	1544	1088	1909000	0.0588235294	_N1110000)
37	2.Test(_CONF)	2000	456	1544	1 180	1885000	0.0416666667	_N1000	
38	2.Test(_CONF)	2000	456	1544	1796	1577000	0	_N000	
39	2.Test(_CONF)	2000	458	1544	1871	1539500	0	_N010	
40	2.Test(_CONF)	2000	456	1544	2000	1508000	0	_N1010	
41	3.Perfect Model(MODEL)	2000	457	1543	0	0			
42	3.Perfect Model(MODEL)	2000	457	1543	457	2285000	1		
43	3.Perfect Model(MODEL)	2000	457	1543	2000	1513500	0		
44	4.Perfect Model(TEST)	2000	458	1544	0	0	0.2285		
45	4.Perfect Model(TEST)	2000	456	1544	456	2280000	1		
46	4.Perfect Model(TEST)	2000	458	1544	2000	1508000	0		
47	5.Random Model(MODEL)	2000	457	1543	0	0			
48	5.Random Model(MODEL)	2000	457	1543	2000	1513500	0.2285		
49	6.Random Model(TEST)	2000	458	1544	0	0			

type:モデルの種類,tot_N:総事例件数,tot_Pos: ターゲット事例総件数,tot_Neg:非ターゲット事例 総件数,cutoff_n:累積選択件数(横軸), cutoff_profit:選択したオブザベーションから得られ る収益(縦軸),cutoff_pred:ターゲット出現率のし きい値(そのノードのターゲット出現率),_NODE: ノード番号

なお、data=入力データを指定したときは、変数 _NODEは以下のように変更されます。

GROUPVAR=パラメータを指定した場合はその変数

・GROUPNUM=パラメータを指定した場合は _PRED_RANK

・その他の場合は変数は追加されません。

11.1.10 欠損値の取り扱い

data=入力の場合、いずれかの予測値に欠損が存在するオブザベーションは計算から除外されます。

収益チャートにおいてTP=,FP=,TN=,FN=変数値に欠 損値があれば、エラーメッセージを出して分析を中 断します。(すべて0はOKですが、意味がありません)

11.1.11 制限

data=入力データセットを指定し、オブザベーション に対する複数のモデルによる予測値を比較する場合 にpred=パラメータに指定可能な予測変数の数の上

Data Bring New Insight to Your Business 1 11.1 ゲイン・収益 (dmt_gainchart)

限は9個です。

11.1.12 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type nobs lab&i spc&i typ&i zketa _speclen _specnum _errormsg

Data Bring New Insight to Your Business

11.2 比較プロット(dmt_compareplot)

DMT_COMPAREPLOT 指定画面	X
比較プロット	入力指定のリセット
入力モデル (model=) 表示 入力検証モデル (test=) 入力データ (data=) 表示	… 表示
where条件 ターゲット変数 (y=) ターゲット値 (target=) 予測変数名(pred=) グループ別集計 ● なし ラング分類(groupnum=) 10 ● 変数(groupvar=) NODE	sort btn
軸の指定(axis=) ● 自動) 指定 開始値 終了値 ステップ値 表示タイトル (title=) 座標値出力データ _COMPARE 表示 [生成コード]	
ま示するデータ件数の上限	実行 前回 表示 戻る
	~

11.2.1 概要

このアプリケーションで、**比較プロット**

(DMT_COMPAREPLOT)と呼ぶ分析グラフは、検 証用データにおける終端ノード別のターゲット出現 率、もしくはターゲット変数値の予測-実績比較プ ロットを描き、R2乗(R-Square)値を表示するマク ロです。

ゲインチャート・収益チャート(DMT_GAINCHART)が 表示するゲインチャート、ROCチャートやAR値、 ROCエリア値は、ターゲット出現率やターゲット変 数値の大きさそのものではなく、予測値と実績値と 順序関係における整合性を評価します。それに対し て比較プロットやR2乗値は誤差(=実績値-予測値) の大きさそのものを評価します。

ここで、誤差の定義は、以下のように、2通り選択で きます。

(1) model=,test=パラメータを指定した場合 ノード単位の平均誤差の大きさに基づいた 実際値

と予測値の比較プロットおよびR2乗値を表示します。

Error(n)=Actual(n)-Pred(n)

ただし、

Error(n) は n 番目のノードの誤差 Actual(n) は n 番目のノードの実績値の平均値 Pred(n) は n 番目のノードの予測値の平均値

R2乗=1-誤差平方和/偏差平方和 =1-Σ{W(n)*Error(n)}/Σ[W(n)*{Actual(n)-Actual_bar}]

ただし、

W(n) は n 番目のノードに含まれるオブザベーショ ン数 Error(n) は n 番目のノードの誤差(上記) Actual(n) は n 番目のノードの実績値の平均値 Actual_bar は実績値の全体平均値

(2) data=パラメータを指定した場合 標準 (groupvar=パラメータ指定なし)ではオブザベ

ーション単位の誤差の大きさに基づいた実際値と予 測値の比較プロットおよびR2乗値を表示します。(た だし、groupnode=Yを指定すると、(1)と同じくノー ド単位の誤差を計算します。)

Error(i)=Actual(i)-Pred(i)

ただし、

Error(i) は i 番目のオブザベーションの誤差 Actual(i) は i 番目のオブザベーションの実績値 Pred(i) は i 番目のオブザベションの予測値

R2乗=1-誤差平方和/偏差平方和 =1-Σ{ Error(i)}/Σ{Actual(i)-Actual_bar}

ただし、

Error(i) は i 番目のオブザベーションの誤差(上記) Actual(i) は i 番目のオブザベーションの実績値 Actual_bar は実績値の全体平均値

11.2.2 指定方法

(コマンド実行モードでの指定)

%dmt_compareplot(help,data=,y=,target= ,pred=_CONF,plotobs=2000 ,groupvar=,groupnum=,model=,test=,axis=,title= ,r2f=5.3,rmsef=best8. ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,dev=GIF,title=,language=JAPANESE ,graph_language=ENGLISH ,outhtml=dmt_compareplot.html,outpath=)

(GUI実行モードでの変更点)

- ・help は指定不可。
- ・座標出力データに名前を付けることができます。
- (コマンド実行モードでは _COMPARE 固定)
- ・plotobs= はオプション画面で指定

(入力データセットの個々のオブザベーションに付与され た予測値と実際値を比較する場合)

以下の3個のパラメータは必須指定です。ただし、回 帰木モデルの場合はtarget=パラメータは指定しては いけません。

入力データ (data=) … 入力データセット名の指定. ターゲット変数 (y=) … ターゲット変数名の指定. ターゲット値 (target=) … ターゲット値の指定 (分類木モデルの場合のみ必須)

以下の5個のパラメータはオプション指定です。(=の 右辺の値はデフォルト値を表しています)

予測変数名 (pred=_CONF) … 予測変数名の指定.(単一変数のみ指定可)
 軸の指定 (axis=) … グラフの縦軸、横軸の値の範囲指

定. デフォルトは自動設定です.

- 図に表示する上限オブザベーション数 (plotobs=2000) ... 図に表示する上限オブザベー ション数を指定します
- グループ単位の表示 (groupvar=)

予測値のランク単位の集計表示 (groupnum=)

(1つのツリーモデルをテストデータに適用した場合の予 測値と実際値の誤差を比較する場合)

以下の2個のパラメータを同時に指定します。 (model=データセットは予測値、test=データセット は実績値をそれぞれ計算するために用いられます.)

- 入力モデル (model=) … 入力モデルデータセット名の 指定.
- 入力検証モデル (test=) ... テストデータに対してモデル を適用したときのモデル形式データセット名の指定

(その他のパラメータ)

以下の**13**個のパラメータはオプション指定です。(=の右辺の値はデフォルト値を表しています)

help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)

- R2乗値の表示フォーマットの指定(r2f=5.3)
- 誤差平均平方値の表示フォーマットの指定 (rmsef=best8.)
- アップリフトモデルにおける処理群(DATA)を表す記号 (d label=[D])
- アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C])
- アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C])

表示タイトル (title=) ... 画面出力のタイトルの指定.

(%str,%nrstr,%bquote などの関数で囲んで指定する こと)

- 言語 (language=JAPANESE)
- グラフ表示言語 (graph_language=ENGLISH)
- グラフデバイスの指定 (dev=GIF) ... グラフィックデ バイスの指定.

HTML出力ファイル名

(outhtml=dmt_compareplot.html) (コマンド実行モー ドでのみ有効)

HTMLファイル出力ディレクトリの指定 (outpath=)(コマンド実行モードでのみ有効)

座標値出カデータ … 図の座標値をデータ出力します。 GUI実行環境では名前を指定できますが、コマンド 実行モードでは _comparet という固定の名前で WORKライブラリに自動出力されます。

11.2.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。この指定

Data Bring New Insight to Your Business 1 11.2 比較プロ

はtest=パラメータと一緒に指定する必要があります。 例:model=bunseki1

入力検証モデル (test=)

入力モデル形式データセット名を指定します。この 指定はmodel=パラメータと一緒に指定する必要があ ります。

例:test=kensho1

入力データ (data=)

入力データセット名を指定します。データセットオ プションを指定できます。data=を指定する場合は、 同時に、y=, target=(必要であれば), pred=の指定が必 須です。

例:data=a,data=a(where=(DM="1"))

ターゲット変数 (y=)

data= 入力データセットに含まれるターゲット変数 名を指定します。 例:y=flag, y=revenue

ターゲット値(target=)

分類木モデルの予測値と実績値を比較検証する場合、 y= ターゲット変数のターゲット値を指定します。回 帰木モデルの検証を行う場合は指定してはいけません。

予測変数名 (pred=_CONF)

入力データセットに含まれる予測ターゲット出現率 を表す変数名を1つだけ指定します。 なお、_CONF は分類木モデルの場合の予測変数名デ フォルトとなっています。回帰木モデルの検証の場 合は、回帰木モデルの予測変数名(デフォルトは _MEAN) を指定してください。

図に表示する上限オブザベーション数 (plotobs=2000) data= 入力データセットに含まれるデータから図に 表示する上限オブザベーション数を正の整数値で指

定します。デフォルトは5000です。入力データセットのオブザベーション数がこの上限を超える場合はランダム抽出を行い上限数のデータのみプロットの対象にしています。なお、R2乗値の計算は全オブザベーションから計算しています。

グループ単位の表示 (groupvar=)

data=指定の場合に、入力データに含まれる変数を1 個だけ指定します。指定すると、チャートのプロッ ト点が個々のオブザベーション単位から指定変数値 が同じグループ単位の表示に変更されます。(注意: DMTデシジョンツリーV1.2の GROUPNODE=Y パ ラメータ指定は無効になりました。 GROUPVAR=_NODE に置き換えてください。)

予測値のランク単位の集計表示 (groupnum=)

data=指定の場合に、正の整数値を指定します。オブ ザベーションを予測値の大きさに基づくランクにグ ループ化(ビニングとも呼ばれる)し、ランクグル ープ単位の表示に変更します。

軸の指定 (axis=)

グラフの両軸の範囲を axis=開始値 to 終了値 by 増分値 の形式で指定します。デフォルトはデータか ら自動計算します。縦軸、横軸とも共通の範囲が用 いられます。自動計算結果が見づらい場合は、実際 の分布範囲に合わせた範囲を指定することにより見 やすくなる場合があります。 例: axis=0 to 0.5 by 0.05

グラフデバイスの指定 (dev=GIF)

グラフ描画に用いるグラフィックデバイス名を指定 します。デフォルトは **dev=GIF** です。 例: **dev=JPEG**

表示タイトル (title=)

画面出力される表にタイトルを指定できます。指定 しない(デフォルト)場合、以下のようなタイトル が自動的に付与されます。

%bquote(&data におけるモデル予測値 対 実績値 (ターゲット:&y="&target"))

タイトルを指定する場合、上記のように%bquote関数の中に記述してください。

言語(language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

グラフ画面表示言語 (graph_language=ENGLISH)

グラフィック出力画面に表示する既定のタイトルや 軸 ラベル 等に表示する 言語を指定します。 graph_language=ENGLISH が既定です。※ 現行 WPS ではグラフ上には日本語が表示できませんので、 デフォルトの graph_language=ENGLISH を変更し ないでください。

R2乗値の表示フォーマットの指定 (r2f=5.3)

比較プロットの上部に表示される R2 乗値の 表示フォーマットを指定します。

誤差平均平方値の表示フォーマットの指定 (rmsef=best8.)

比較プロットの上部に表示される誤差平均平 方(RMSE)の表示フォーマットを指定しま す。

アップリフトモデルにおける処理群(DATA)を表す記号 (d_label=[D])

model=と test=を指定したモデルがアップリフトモデルの場合に有効。処理群を表す記号を指定します。

アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C])

model=と test=を指定したモデルがアップリフトモデルの場合に有効。対照群を表す記号を指定します。

アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C])

model=と test=を指定したモデルがアップリフトモデルの場合に有効。処理群と対照群のターゲット値の差を表す記号を指定します。

11.2.4 GUI 実行モードで有効なパラメータの詳細

座標値出力データ

図の座標値を出力するデータセットに名前をつけま す。(コマンド実行モードでは、WORKライブラリに _compare という決まった名前で自動出力されま す。)

11.2.5 コマンド実行モードで有効なパラメータの詳細 help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードでは 指定できません。) 例:%dmt_compareplot(help)

11.2.6 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_compareplot.html

分析結果図を保存するHTML出力ファイル名を指定 します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

11.2.7 実行例

例1:分類木の比較プロット

%dmt_tree(data=samp_data,y=flg,target=1,x=sei--D M,mincnt=50,maxlvl=10,outmodel=tree1) %dmt_treescore(model=tree1,data=test_data,y=flg,t arget=1,outmodel=TEST_tree1) %dmt_compareplot(model=tree1,test=TEST_tree1)

Predicted(tree1) VS. Actual(TEST_tree1) Comparison Plot Rsquare=0.954, Root Mean Square Error=0.062339

上図のようなプロット図を画面表示します。図の縦 軸はターゲット実績値、横軸はモデルによる予測値 を表します。プロット点は各終端ノードもしくはオ ブザベーションを表し、対角線上に乗っている場合、 予測と実際が一致していることを表します。ノード 単位の比較図におけるプロット点の円の大きさはノ ード件数の大きさを反映しています。

(TIPS) 検証データにモデルを適用した場合のモデル 形式データセットの作成は、単純に予測値をつける より、予測値をつけた後の処理(モデルのすべての 中間ノードを含むノード別に予測値を集計する処 理)が必要になるため、時間がかかります。以下の ように予測値をつけたデータを作成し、そのデータ を入力して予測値と実際値をノードグループ別 (groupvar=_NODE)に集計した比較プロットを描く 方が速く実行できます。(全く同じ比較プロットが表 示されます)

%dmt_treescore(model=tree1,data=test_data,outsco re=test_score,pred=PRED1)

%dmt_compareplot(data=test_score,y=flg,target=1,p red=PRED1,groupvar=_NODE)

Data Mine Tech Ltd. Data Bring New Insight to Your Business

Predicted VS. Actual for the target: flg="1" in test_score [_NODE grouped] Rsquare=0.954, Root Mean Square Error=0.062339

1

なお、上の例で groupvar=_NODEを指定しない場合、 flgの実際値はflg=1 (ターゲット出現)またはflg=0 (非 出現)のいずれかの2値しかとりません。グラフは以 下のようになり、オブザベーション単位で誤差を計 算し、集計しますので、R2乗値や誤差平均平方の値 も変化します。

%dmt_compareplot(data=test_score,y=flg,target=1,p red=PRED1)

Predicted VS. Actual for the target: flg="1" in test_score Rsquare=0.459, Root Mean Square Error=0.308648

例2:回帰木の比較プロット

%dmt_tree(data=samp_data,y=kingaku,x=sei--DM,m incnt=50,maxlvl=10,outmodel=tree2)

%dmt_treescore(model=tree2,data=test_data,outsco re=test_score2,pred=PRED2)

%dmt_compareplot(data=test_score2,y=kingaku,pre d=PRED2,axis=100 to 1600 by 500)

ランキング指定を行うと以下のようになります。

%dmt_compareplot(data=test_score2,y=kingaku,pre d=PRED2,groupnum=10)

Predicted VS. Actual for the target: kingaku in test_score2 [_PRED_RANK grouped] Rsquare=0.934, Root Mean Square Error=35.69234

例3:アップリフトモデルの比較プロット

%dmt_tree(data=SAMP_DATA(where=(DM="1")),co ntrol=SAMP_DATA(where=(DM="0")),y=flg,target=1 ,x= sei nenrei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu nenshu

,outmodel=flg_uplift,mincnt=100,maxlvl=5) %dmt_treescore(data=TEST_DATA(where=(DM="1")),control=TEST_DATA(where=(DM="0")),model=flg_ uplift,y=flg,target=1,outmodel=TEST_flg_uplift)

%dmt_compareplot(model=flg_uplift,test=TEST_flg_uplift)

1

Predicted(flg_uplift) VS. Actual(TEST_flg_uplift) Comparison Plot Rsquare=0.989, Root Mean Square Error=0.030234 [D] Actual Ratio 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.8 09 0 1 0.2 0.3 0.4 0.5 0.6 0 7 [D] Predicted Bati Predicted(flg_uplift) VS. Actual(TEST_flg_uplift) Comparison Plot Rsquare=0.915, Root Mean Square Error=0.043139 [C] Actual Ratio 0. 0.1 [C] P Predicted(flg_uplift) VS. Actual(TEST_flg_uplift) Comparison Plot Rsquare=0.891, Root Mean Square Error=0.075569 [D]-[C] Actual Differen

> -0.5 0 0.5 [D]-[C] Predicted Difference

model=とtest=を指定すると、検証データにおける、 処理した場合の予測値と実際の値のノード集計結果 のプロット図がまず最初に表示されます。2番目のプ ロット図は対照群に対する予測と実際の比較です。 そして、3番目の図は、処理した場合と処理しなかっ た場合の予測値の差と検証データにおける2群のノ ード実績値の差を各ツリーノードごとに比較したプ ロットとなっています。

(TIP) 同様の図を検証データに対するアップリフト モデルの処理した場合としなかった場合の2つの予 測値をつけたデータセットを作成し、これを入力と して作成することもできます。以下のように、 DMT_TREESCOREマクロでdata=,control=,pred=の 各パラメータを変えながら2回実施し、その座標出力 データセットを用いて、ノードごとのターゲット予 測値および実績値の差分を計算し、GPLOTプロシジ ャで直接プロット図を作成します。

(処理群の検証データに対する比較プロット) %dmt_treescore(data=TEST_DATA(where=(DM="1")),control=TEST_DATA(where=(DM="0")),model=flg_ uplift,outscore=TEST_DM_1_SCORE,data_pred=dat a pred)

%dmt_compareplot(data=TEST_DM_1_SCORE,y=fl g,target=1,pred=data_pred,groupvar=_NODE)

Predicted VS. Actual for the target: flg="1" in TEST_DM_1_SCORE [_NODE grouped] Rsquare=0.989, Root Mean Square Error=0.030234

model=,test=指定の処理群の検証データの比較プロットと同じ図が得られます。

コマンド実行モードでは、座標データは _compare という固定の名前で出力されます。次の DMT_COMPAREPLOTの実行によって上書きされて しまわないように、_compare1にコピーしておきます。

data _compare1;set _compare;run;

(対照群の検証データに対する比較プロット) %dmt_treescore(data=TEST_DATA(where=(DM="0")),control=TEST_DATA(where=(DM="1")),model=flg_ uplift,outscore=TEST_DM_0_SCORE,control_pred= control_pred)

%dmt_compareplot(data=TEST_DM_0_SCORE,y=fl g,target=1,pred=control_pred,groupvar=_NODE) Predicted VS. Actual for the target: flg="1" in TEST_DM_0_SCORE [_NODE grouped]

(処理群と対照群の差に対する比較プロット) これは処理群、対照群それぞれの比較プロット座標 出力データを利用してSAS言語で座標値を計算し、 プロットします。

```
data _compare2;
  set _compare1(in=DM_1
rename=(ACT=data_ACT)) _compare(in=DM_0
rename=(ACT=control_ACT));
  if DM 1 then DM="1";
  else DM="0";
run;
proc means data=_compare2 nway noprint;
  class _NODE;
  var data_pred control_pred data_ACT
control ACT:
  output out=out mean=;
run;
data uplift;
  set out:
  dif_pred=data_pred-control_pred;
  dif_ACT=data_ACT-control_ACT;
run;
title "plot of DIF_ACT vs. DIF_PRED";
symbol1 c=red v=circle;
proc gplot data=uplift;
  plot dif_ACT*dif_pred/autovref autohref;
run:
```


11.2.8 データセット出力

WORK._COMPAREにプロット点の座標値をデータ セット出力します。(GUI実行モードでは座標値出力 データに名前をつけられます)

表示										
:¥User:	¥Users¥DMT¥samp_data¥html¥temp¥_compare.html 🗸 🧕 🛛 🗸 🗸 🗸 🗸									
	compare									
	_compare									
	Obs	n	- 1							
	1	_N000	0	0	616	- 11				
	2	_N010	0	0	75	- 11				
	3	_N1010	0	0.0465116279	129	- 11				
	4	_N1000	0.0416666667	0.0434782609	92	- 11				
	5	_N1110000	0.0588235294	0.1724137931	58	- 8				
	6	_N0110	0.0615384615	0.1428571429	49	- 11				
	7	_N1011	0.0625	0.0684931507	73	- 8				
	8	_N001	0.097826087	0.0967741935	93	- 11				
	9	_N01110	0.1547619048	0.1454545455	55	- 11				
	10	_N1110001	0.2096774194	0.25	76	- 8				
	11	_N01111	0.243902439	0.18	100	- 11				
	12	_N1110010	0.3529411765	0.3469387755	49	- 8				
	13	_N11110	0.4657534247	0.4590163934	61	- 8				
	14	_N1110011	0.5102040816	0.3555555556	90	- 8				
	15	_N11101	0.6140350877	0.7457627119	59	- 11				
	16	_N1001	0.6805555556	0.5074626866	67	- 8				
	17	_N1100	0.6931818182	0.7848101266	79	- 11				
	18	_N11111	0.8493150685	0.8351648352	91					
	19	_N1101	0.8863636364	0.875	88					
						\sim				

_NODE: ノード番号,_CONF: モデルターゲット出 現率,ACT: 実績ターゲット出現率,n:件数

data=パラメータを指定した場合は、オブザベーショ ン単位のデータセットが出力されます。 GROUPVAR=、またはGROUPNUM=パラメータが指 定されるとグループ単位の集計結果になり、識別変 数(GROUPVARに指定した変数、GROUPNUMを指 定した場合は、_PRED_RANK)が追加されます。

ただし、分類木の場合は、実績値は1か0しか存在し ませんので、予測値と実績値の存在する組合せを集 計した形で出力されます。(Nが追加されます)

比較プロットの座標値データの例(data=指定で回帰木で groupvar=,groupnum=パラメータを指定しない場合)

Data Bring New Insight to Your Business

表示										
C:¥Users¥	DMT	¥samp_	data¥html¥temp¥_cc	ompare_nen 🗸 9	0% 🗸					
	_compare_nenshu									
		_	• -							
0)bs	ACT	PRED_NENSHU	DIF						
	1	103	203.58333333	-100.5833333						
	2	103	203.58333333	-100.5833333						
	3	105	203.58333333	-98.58333333						
	4	108	203.58333333	-95.58333333						
	5	114	203.58333333	-89.58333333						
	6	122	203.58333333	-81.58333333						
	7	126	203.58333333	-77.58333333						
	8	128	203.58333333	-75.58333333						
	9	131	203.58333333	-72.58333333						
	10	149	203.58333333	-54.58333333	•					
	11	153	203.58333333	-50.58333333	•					
	12	167	203.58333333	-36.58333333						
	13	175	203.58333333	-28.58333333	•					
	14	195	203.58333333	-8.58333333	•					
	15	197	203.58333333	-6.58333333						
	16	198	203.58333333	-5.58333333						
	17	199	203.58333333	-4.58333333	•					
	18	213	203.58333333	9.41666667	·					
	19	228	203.58333333	24.41666667	<u></u>					
	20	230	203.58333333	26.41666667	·					
	21	244	203.58333333	40.41666667	<u>'</u>					
	22	249	203.58333333	45.41666667	·					
	23	258	203.58333333	54.41666667	<u></u>					
	24	258	203.58333333	54.41666667	'					
	25	265	203.58333333	61.41666667	<u></u>					
	26	278	203.58333333	74.41666667						
	27	283	203.58333333	79.41666667	<u></u>					
	28	290	203.58333333	86.41666667						
	29	332	203.58333333	128.41666667						
	30	338	203.58333333	134.41666667						
	31	341	203.58333333	137.41666667						
	32	366	203.58333333	162.41666667						
	33	526	203.58333333	322.41666667						
	34	100	276.375	-176.375	~					
	26	100	276 276	176 376						

data=入力の場合、指定する予測変数の値のいずれか に欠損が存在するオブザベーションは計算から除外 されます。

回帰モデルまたは回帰アップリフトモデルの場合は 実績値に欠損があるオブザベーションも計算から除 外されます。

11.2.10 制限

プロットする点の数は最大5000です。これを超える 場合は、5000件のデータをランダム抽出して表示し ます。

ただし、**R2**乗値、誤差平均平方の値は全データから 計算された値が表示されます。

11.2.11 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type nobs lab&i spc&i typ&i zketa _speclen _specnum _errormsg

11.2.9 欠損値の取り扱い

11.3 正誤表(dmt_correcttab)

DMT_CORRECTTAB 指定画面		×
正誤表		入力指定のリセット
入力モデル (model=) … 表示 入力検証モデル (test=) … 表示		sort btn
入力データ (data=) where条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
入力データが集計データの場合の重み(count=) ● 1 ○ 重み変数		
最低ターゲット予測出現率(cutoff=) (値(0< [*] <1) (MEAN) 比例(PROP) 素元タイトル (title=)		
出力正誤表データ <u>_CORRECT</u> 表示 [生成]ード]		
[ログ] 表示するデータ件数の上限 🛛 🗸 🗋 変数ラベルの表示 🗌 値ラベルの表示 🗌 別々の画面に表示	実行	前回表示していた。
		~

11.3.1 概要

正誤表(DMT_CORRECTTAB)はモデルの予測ター ゲット出現率の大きさによってターゲットが出現す るか否かを予測する場合の予測と実績の正誤表を作 成し、正答率を表示します。 このマクロは分類木モデルの精度を検証する場合の み有効です。

正誤表とは、予測ターゲット出現率の大きい順にな らべたオブザベーションを、ある予測ターゲット出 現率をしきい値として、しきい値以上の予測ターゲ ット出現率のオブザベーションはすべて「正予測 (Positive Prediction)」(ターゲット出現)と予測し、 しきい値未満の予測ターゲット出現率のオブザベー ションはすべて「負予測(Negative Prediction)」(ター ゲット非出現)と予測したときに、予測の正負別と 実際のターゲット出現有無(正事例、負事例と呼び ます)の件数をクロス集計した表のことです。

(正誤表(Confusion Matrix))

予測	実	94	
	正事例	負事例	AI.
正予測	A 正予測真	B 正予測偽	正予測総件数
(ターゲット出現と予測)	(True Positive)	(False Positive)	A+B
負予測	C 負予測偽	D負予測真	負予測総件数
(ターゲット非出現と予測)	(False Negative)	(True Negative)	C+D
84	正事例総件数	負事例総件数	全体件数
#I	A+C	B+D	N

上記正誤表において、予測ターゲット出現率のしき い値を変化させることにより、正予測総件数と負予 測総件数を増減させることができます。しかし、正 事例総件数と負事例総件数はしきい値とは無関係で す。4つのセル(A 正予測真、B 正予測偽、C 負予 測偽、D 負予測真)の件数(A,B,C,D)を用いて、正 答率、ターゲット出現率、ターゲット再現率は以下 のように定義されます。

正答率=(A+D)/N ターゲット出現率=A/(A+B) ターゲット再現率=A/(A+C)

11.3.2 指定方法

Data Bring New Insight to Your Business 1 11.3

(コマンド実行モードでの指定)

%dmt_correcttab(help,data=,y=,target= ,pred=_CONF,cutoff=0.5,count=1,model=,test= ,title=,language=JAPANESE ,outhtml=dmt_correcttab.html,outpath=)

(GUI実行モードでの変更点)

・help は指定不可。

- ・count=1 に固定。
- ・出力正誤表データに名前を付けることができます。 (コマンド実行モードでは CORRECT 固定)

(入力データセットの個々のオブザベーションに付与され た予測値の精度を評価する場合)

以下の3個のパラメータは必須指定です。

入力データ (data=) ... 入力データセット名の指定. ターゲット変数 (y=) ... ターゲット変数名の指定. ターゲット値 (target=) ... ターゲット値の指定.

以下の2個のパラメータはオプション指定です。(=の 右辺の値はデフォルト値を表しています)

予測変数名 (pred=_CONF) … 予測変数名の指定.(単 一変数のみ指定可)

count=1 … 入力データセットのオブザベーションが 集計データである場合の重み変数の指定.集計 データで無い場合は1を指定します.(GUI実行モ ードでは1固定)

(1つのツリーモデルをテストデータに適用した場合の予 測値の精度を評価する場合)

以下の2個のパラメータを同時に指定します。 (model=データセットは予測値、test=データセット は実績値をそれぞれ計算するために用いられます.)

- 入力モデル (model=) … 入力モデルデータセット名 の指定.
- 入力検証モデル (test=) ... テストデータに対してモ デルを適用したときのモデル形式データ

(その他のパラメータ)

- help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)
- 最低ターゲット予測出現率 (cutoff=0.5) ... ターゲッ トが出現すると予測する予測出現率下限値の指 定.0~1の値、または MEAN, PROP が指定で きます。
- 表示タイトル (title=) ... 画面出力のタイトルの指定.
- (%str,%nrstr,%bquote などの関数で囲んで指定する こと)
- 言語 (language= %sysfunc(getoption(LOCALE)))

... 言語の選択

出力正誤表データ … 正誤表をデータ出力します。 GUI実行環境では名前を指定できますが、コマ ンド実行モードでは _correct という固定の名 前でWORKライブラリに自動出力されます。

11.3.3 パラメータの詳細

入力モデル (model=)

入力モデルデータセット名を指定します。この指定 は単独でもtest=パラメータと一緒に指定することも 可能です。単独に指定した場合はモデルの精度を検 証します。test=と共に指定した場合はモデル予測出 現率の参照のために用いられ、test=モデル形式デー タセットにおけるモデルの精度を検証します。 例:model=bunseki1

入力検証モデル (test=)

精度を検証する対象の入力モデル形式データセット 名を指定します。この指定はmodel=パラメータと一 緒に指定する必要があります。 例:test=kensho1

入力データ (data=) 入力データセット名を指定します。例: data=a

ターゲット変数 (y=) data= 入力データセットに含まれるターゲット変数 名を指定します。 例: y=flag

ターゲット値 (target=)

data= 入力データセットに含まれるターゲット変数 のターゲット値を指定します。 ターゲット変数が文字タイプの場合は1種類の値を 指定します。特殊な文字(+,-など)を含まない限り 引用符で囲む必要はありません。ターゲット変数が 数値タイプの場合は1種類の値、もしくはあるしきい 値を境とした「以上」、「以下」、「超」、「未満」のい ずれかの範囲を指定可能です。数値変数タイプで範 囲を指定する場合は引用符で囲んではいけません。

予測変数名 (pred=_CONF)

入力データセットに含まれる予測ターゲット出現率 を表す変数名を指定します。デフォルトは _CONF です。

最低ターゲット予測出現率 (cutoff=0.5)

指定の値以上のターゲット予測出現率を持つ終端ノ ードまたはオブザベーションはすべてターゲット出 現、それ以外の終端ノードまたはオブザベーション はターゲット非出現とみなした正誤表を作成します。 デフォルトは0.5に設定しています。model=および test= パラメータと共に指定する場合、cutoff値は 0 ~1 の範囲の数値、または cutoff=MEAN(モデルの 全体出現率(ルートノードのターゲット出現率)を しきい値に設定)または cutoff=PROP(モデルの全 体出現率(ルートノードのターゲット出現率)と同

じ割合に近い正予測件数が得られるターゲット出現 率をしきい値に設定) が指定できます. 例:cutoff=0.1

表示タイトル (title=)

画面出力される表にタイトルを指定できます。指定 しない(デフォルト)場合、以下のようなタイトル が自動的に付与されます。

%bquote(&data におけるモデルの正誤表(ターゲット:"&target", 予測出現率の下限=&cutoff.))

タイトルを指定する場合、上記のように%bquote関数の中に記述してください。

言語(language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

11.3.4 GUI 実行モードで有効なパラメータの詳細

出力正誤表データ

正誤表を出力するデータセットに名前をつけます。 (コマンド実行モードでは、WORKライブラリに _correct という決まった名前で自動出力されます。)

11.3.5 コマンド実行モードで有効なパラメータの詳細

count=1

data= 入力データセットのオブザベーションが集計 データである場合の重み変数名を指定します.集計 データではない通常の場合はデフォルトcount=1の ままにしておきます.なお、重み変数名をこのパラメ ータで指定する場合、pred= パラメータに指定可能 な予測値の数は1個のみになります。(GUI実行モー ドでは指定不可)例:count=freq

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードでは 指定できません。) 例:%dmt_correcttab(help)

11.3.6 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_correcttab.html

分析結果図を保存するHTML出力ファイル名を指定 します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

11.3.7 実行例

例1: cutoff=0.5 (デフォルト)を指定した場合

%dmt_tree(data=samp_data,y=flg,target=1,x=sei nenrei jukyo kazoku_kosei gakureki kinmusaki gyoshu shokushu nenshu DM,mincnt=50,maxlvl=10,outmodel=tree1) %dmt_treescore(model=tree1,data=test_data,y=flg,t arget=1,outmodel=TEST_tree1) %dmt_correcttab(model=tree1,test=TEST_tree1,cut off=0.5)

モデル tree1 の テスト TEST_tree1 における正誤表, 予測出現率の下限=0.5 正答率= 86.00%

上図のような画面出力を行います。

例2: cutoff=MEANを指定した場合

%dmt_correcttab(model=tree1,test=TEST_tree1,cut off=mean)

モデル tree1 の テスト TEST_tree1 における正誤表, 予測出現率の下限=0.2285 (モデル予測出現率の平均値) 正答率= 81.80%

例3: cutoff=PROPを指定した場合

%dmt_correcttab(model=tree1,test=TEST_tree1,cut off=prop)

Data Mine Tech Ltd. Data Bring New Insight to Your Business 1

モデル tree1 の テスト TEST_tree1 における正誤表, 予測出現率の下限 =0.5102040816(モデルのターゲット出現率 0.2285 に最も近いしきい値) 正答率= 86.00%

		実績					
	1.9-	ゲット	2.非夕-	ゲット	ät		
	件数 96		件数 96		件数 96		
予測フラグ							
1.ターゲット	325	16.25	149	7.45	474	23.70	
2.非ターゲット	131	6.55	1,395	69.75	1,526	76.30	
81	456	22.80	1,544	77.20	2,000	100.00	

例4: data=,y=,target=,pred=を指定する場合

%dmt_treescore(model=tree1,data=test_data ,outscore=TEST_score1,pred=SCORE1) %dmt_correcttab(data=TEST_score1,y=flg,ta rget=1,pred=SCORE1)

	正名	[率=	86.0	0%			
		実績	フラグ				
	1.9-	ターゲット 2.非ターク		グット	yh #		
	仟数	96	仟数	96	件数	96	
予測フラグ							
1.ターゲット	325	16.25	149	7.45	474	23.70	
2.非ターゲット	131	6.55	1,395	69.75	1,526	76.30	
84	455	22.80	1 5 4 4	77 20	2 000	100.00	

注意: data=指定の場合は、モデルのターゲット出現 率に関する情報が利用できないため、cutoff=MEAN.

11.3.8 データセット出力

cutoff=PROP は指定できません。

WORK._CORRECTという名前のデータセットに予 測と事例(実績)、ターゲット出現とターゲット非出 現の2カテゴリ*2カテゴリのクロス集計結果をデー タセットに出力します。(GUI実行モードでは名前を 変更できます。)

正誤表出カデータの例

	表示							
C¥L	¥Users¥DMT¥samp_data¥html¥temp¥_correct.html 🛛 🗸 90%							
	_correct							
	Obs	_PRED	_ACTUAL	COUNT	PERCENT	PCT_COL	PCT_ROW	
	1	1.ターゲット	1.ターゲット	325	16.25	71.27	68.57	- 1
	2	1.ターゲット	2.非ターゲット	149	7.45	9.65	31.43	- 1
	3	2.非ターゲット	1.ターゲット	131	6.55	28.73	8.58	- 1
	4	2.非ターゲット	2.非ターゲット	1395	69.75	90.35	91.42	
								, ×
							1	-

_PRED:予測のカテゴリ,_ACUTUAL:事例のカテ ゴリ,COUNT:件数,PCT_ROW:行百分率, PCT_COL:列百分率

11.3.1 欠損値の取り扱い

data=入力の場合、実績値または予測値のいずれかに 欠損が存在するオブザベーションは計算から除外さ れます。

11.3.2 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type nobs lab&i spc&i typ&i zketa _speclen _specnum _errormsg

11.4 アップリフト図 (dmt_upliftchart)

DMT_UPLIFTCHART アップリフトチャート作成指定画面	×
アップリフトチャートの作成	入力指定のリセット
入力モデル (model=) … 表示 入力検証モデル (test=) … 入力データ (data=) … 表示 where条件 … ∨ 対照データ (control=) … 表示 where条件 … ∨ ターゲット変数 (y=) … ターゲット値 (target=) … … 実施予測変数 (data_pred=) … … … …	表示
ガループ別集計	sort btn
表示タイトル (title=) 相対表示 (relative=) Y • N 座標値出力データ 表示 [生成コード]	
[ログ] 表示するデータ件数の上限 🤍 🗋 変数ラベルの表示 🗌 値ラベルの表示 🗌 別々の画面に表示 実行	前回 表示 戻る
	^

11.4.1 概要

アップリフトチャート(DMT_UPLIFTCHART)は、施策 実施効果(ターゲット出現率またはターゲット平均 値の施策実施による増加量)を基準として作成した ツリーモデル(分類木アップリフトモデル、または 回帰木アップリフトモデル)の判別結果を図示しま す。施策実施群(処理群)、施策非実施群(対照群) それぞれについて、施策実施効果の大きい順(対照 群においては逆順)にノードを並べておき、横軸を 累積件数、縦軸を累積増加応答量(累積アップリフ ト)にとった点を結んだグラフがアップリフトチャ ートです。グラフの上部に累積アップリフト最大と なる各モデルの選択件数と期待累積アップリフトの 値を表示します。

施策実施群(処理群)のアップリフトチャートでは、 アップリフトを「施策を実施した場合の期待応答量 -実施しなかった場合の期待応答量」として定義し ています。全データに対する累積アップリフト値は、 現行の施策実施群全体のアップリフトを表します。 もしも、このときの累積アップリフト値が最大とな っているときは、現行の施策実施対象選択基準を次 回も変更せずに利用すれば良いことを意味します。 しかし、最後の方のいくつかのノードが累積アップ リフトを押し下げている場合は、これらのノードに 該当する顧客は次回の施策実施対象から除外すべき という判断になります。

施策非実施群(対照群)のアップリフトチャートで は、アップリフトを「施策を実施しなかった場合の 期待応答量-実施した場合の期待応答量」として定 義しています。したがって、累積アップリフト値が 正の値の範囲に属するノードは、次回も同様に対照 群に属させるべきです。逆に、累積アップリフト値 が負の値のノードは、次回は施策対象に含めるべき という判断になります。

11.4.2 指定方法

(コマンド実行モードでの指定)

%dmt_upliftchart(help,data=,control=,y=,target= ,data_pred=,control_pred= ,model=,test= ,groupvar=,groupnum=,relative=N ,amountf=comma16.,pctf=7.2 ,d_label=[D].c_label=[C],dif_label=[D]-[C] ,dev=GIF,title=,language=JAPANESE ,graph_language=ENGLISH ,outhtml=dmt_upliftchart.html,outpath=)

(GUI実行モードでの変更点)

・help は指定不可。

・座標出力データに名前を付けることができる。(コ マンド実行モードでは _UPLIFT 固定)

(入力データセットの個々のオブザベーションに付与され た予測値に基づいてグラフを描く場合)

以下の2個のパラメータは常に必須指定です。

- 実施時の予測変数 (data_pred=) ... 処理群予測変数 名の指定.
- 非実施時の予測変数 (control_pred=) ... 対照群予測 変数名の指定.

実際値との比較を行わないで予測値のみを表示する 場合は、以下の2つのうち、少なくとも1つの入力デ ータ指定が必須です。いずれも where=(条件式) など のデータセットオプションを指定可能

入力データ (data=) ... 処理群の入力データセット名 の指定

入力対照データ (control=) ... 対照群の入力データセ ット名の指定

予測値と実際値との比較グラフを描く場合は、上記 の data=パラメータとcontrol=パラメータは両方必 須です。さらに、分類木アップリフトもしくは回帰 木アップリフトのいずれかによって、以下の1個また は2個のターゲットに関するパラメータも必須です。 ただし、回帰木アップリフトモデルの場合は target= パラメータは指定してはいけません。

ターゲット変数 (y=) ... ターゲット変数名の指定. ターゲット値 (target=) ... ターゲット値の指定.

以下の3個のパラメータは予測値と実際値との比較 グラフを描く場合に指定できるオプション指定です。 (=の右辺の値はデフォルト値を表しています)

グループ単位の表示 (groupvar=) 予測値のランク単位の集計表示 (groupnum=) 相対表示 (relative=N)

(1つのツリーモデルを、モデル作成データのみ、または モデルデータとテストデータ、それぞれに適用した場合 を比較する場合) 以下の2個のパラメータを指定します。ただし、test= パラメータは単独指定できません。

入力モデル (model=) … 入力モデルデータセット名 の指定.

入力検証モデル (test=) ... テストデータに対してモ デルを適用したときのモデル形式データ

(その他のパラメータ)

以下の**10**個のパラメータは任意指定です。(=の右辺の値はデフォルト値を表しています)

- help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)
- アップリフト値の表示フォーマットの指定 (amountf=comma16.)
- 百分率の表示フォーマットの指定 (pctf=7.2)
- アップリフトモデルにおける処理群(DATA)を表す記号 (d_label=[D])
- アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C])
- アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C])
- 表示タイトル (title=) ... 画面出力のタイトルの指定.
- (%str,%nrstr,%bquote などの関数で囲んで指定する こと)
- 言語 (language=JAPANESE) … ログやメッセージ を表示する言語の選択
- グラフ表示言語 (graph_language=ENGLISH) ... ロ グやメッセージを表示する言語の選択
- グラフデバイスの指定 (dev=GIF) ... グラフィックデ バイスの指定.
- HTML出力ファイル名 (outhtml=dmt_upliftchart.html) (コマンド実行モードでのみ有効)

HTMLファイル出力ディレクトリの指定 (outpath=)(コマンド実行モードでのみ有効)

座標値出カデータ ... 図の座標値をデータ出力しま す。GUI実行環境では名前を指定できますが、 コマンド実行モードでは ゲインチャートの場 合 _gain, ROCチャートの場合 _roc, 収益チャ ートの場合 _profit という固定の名前でWORK ライブラリに自動出力されます。

11.4.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。 例:model=bunseki1

入力検証モデル (test=)

入力モデル形式データセット名を指定します。この 指定はmodel=パラメータと一緒に指定する必要があ ります。 例:test=kensho1

例:test=kensno1

Data Bring New Insight to Your Business 1 1.1

入力データ (data=)

処理群として施策実施を行った(または行う予定の) 入力データセット名を指定します。データセットオ プションを指定できます。data=を指定する場合は、 同時に、y=, target=(必要であれば), pred=の指定が必 須です。

例:data=a, data=a(where=(DM="1"))

入力対照データ (control=)

対照群として施策実施を行わなかった(または行わ ない予定の)入力データセット名を指定します。デ ータセットオプションを指定できます。data=を指定 する場合は、同時に、y=, target=(必要であれば), pred=の指定が必須です。

例:data=a,data=a(where=(DM="1"))

ターゲット変数 (y=)

data= 入力データセットに含まれるターゲット変数 名を指定します。 例: y=flag, y=revenue

ターゲット値 (target=)

分類木モデルの予測値と実績値を比較検証する場合、 y= ターゲット変数のターゲット値を指定します。回 帰木モデルの検証を行う場合は指定してはいけません。

例: target="1"

なお、引用符で囲まなくても構いません。(自動判断 します)

実施時の予測変数 (data_pred=)

施策を実施した場合のターゲット予測値を表す変数 名を指定します。このパラメータは常に必須です。(1 個~4個までの別々のモデルによる予測変数名をス ペースで区切って指定可) なお、GUI実行モードでは、D_CONF が分類木アッ プリフトモデルの場合の、D_MEANが回帰木アップ リフトモデルの場合のデフォルトとなっています。

例:data_pred=m1_go_pred m2_go_pred

非実施時の予測変数 (control_pred=)

施策を実施しなかった場合のターゲット予測値を表 す変数名を指定します。このパラメータは常に必須 です。(1個~4個までの別々のモデルによる予測変数 名をスペースで区切って指定可。複数のモデルの予 測変数を指定する場合は、モデルの指定を data_pred=の指定順とcontrol=の指定順を対応させ てください)

なお、GUI実行モードでは、D_CONF が分類木アッ プリフトモデルの場合の、D_MEANが回帰木アップ リフトモデルの場合のデフォルトとなっています。 例:data_pred=m1_go_pred m2_go_pred

グループ単位の表示 (groupvar=)

data=、または control=指定の場合に、入力データに 含まれる変数を1個だけ指定します。指定すると、チ ャートのプロット点が個々のオブザベーション単位 から指定変数値が同じグループ単位の表示に変更さ れます。

予測値のランク単位の集計表示 (groupnum=)

data=、または control=指定の場合に、正の整数値を 指定します。オブザベーションを予測値の大きさに 基づくランクにグループ化(ビニングとも呼ばれる) し、ランクグループ単位の表示に変更します。

アップリフト値の表示フォーマットの指定

(amountf=comma16.)

チャートの上部に表示される累積アップリフ ト値の表示フォーマットを指定します。

百分率の表示フォーマットの指定 (pctf=7.2)

relative=Y を指定した場合のチャートの上部 に表示される件数比率などの表示フォーマッ トを指定します。

グラフ画面表示言語 (graph_language=ENGLISH)

グラフィック出力画面に表示する既定のタイトルや 軸 ラベル 等に表示 する 言語を指定します。 graph_language=ENGLISH が既定です。※ 現行 WPS ではグラフ上には日本語が表示できませんので、 デフォルトの graph_language=ENGLISH を変更し ないでください。

相対表示 (relative=N)

relative=Y を指定すると、チャートの縦軸、横軸を、 絶対値の最大値が±100(符号は絶対値の最大値の符 号)になるように比例変換して表示します。モデル データと検証データの件数が異なる場合に指定する とモデルと検証を比較しやすい表示になります。

例:

%dmt_tree(data=SAMP_DATA(where=(DM="1")),co ntrol=SAMP_DATA(where=(DM="0")),y=flg,target=1 ,x=sei nenrei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu nenshu ,mincnt=50,maxlvl=5,outmodel=flg_uplift)

%dmt_treescore(data=TEST_DATA(where=(DM="1" and uniform(1)<0.5)) ,control=TEST_DATA(where=(DM="0" and uniform(1)<0.5)) ,model=flg_uplift,y=flg,target=1,outmodel=TEST_flg_ uplift)

%dmt_upliftchart(model=flg_uplift,test=TEST_flg_upl ift)

%dmt_upliftchart(model=flg_uplift,test=TEST_flg_upl ift,relative=Y)

(relative= 指定なし)

Uplift Chart using Model: flg_uplift, Test: TEST_flg_uplift [For Treatment Data] Cumulative Uplift[Dif. from Control] ((D]-[C]) Max=113(flg_uplift N=412), 49(TEST_flg_uplift N=256) Current=79(flg_uplift N=619), 37(TEST_flg_uplift N=313))

(relative=Y 指定あり)

Uplift Chart using Model: flg_uplift, Test: TEST_flg_uplift [For Treatment Data] Relative Cummulative Uplift[Dif. from Control] ([D]-[C]) Max=100(flg_uplift N=66.56), 100(TEST_flg_uplift N=81.79) Current=69.90(flg_uplift N=100), 75.62(TEST_flg_uplift N=100)

11.4.4 GUI 実行モードで有効なパラメータの詳細

座標値出力データ

図の座標値を出力するデータセットに名前をつけま す。(コマンド実行モードでは、WORKライブラリに 決まった名前(type=指定によって、_gain, _roc,_profit のいずれか)で自動出力されます。)

11.4.5 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードでは 指定できません。) 例:%dmt_gainchart(help)

11.4.6 HTML 出力

分析結果の図表はhtmlファイルに出力されます。保存 先はデフォルトではSASディスプレイマネージャま たはWPSワークベンチの管理下(ワークスペース内 の一時保存ファイル)です。outpath=パラメータを指 定すると、保存先を変更できます。(必ずフルパス指 定します。引用符で囲んでも囲まなくてもかまいま せん)同時にouthtml=パラメータを指定すると、保存 するhtmlファイルに自由に名前を付けることができ ます。

outhtml=dmt_upliftchart.html

分析結果を保存するHTML出力ファイル名を指定します。

例:outhtml=out1.html,

outpath=

HTML図表出力ファイルの保存ディレクトリを指定 します。このパラメータを指定しない場合(デフォ ルト)、HTMLファイルはSASディスプレイマネージ ャまたはWPSワークベンチの管理下に作成されます。 outpath=指定を行う場合、値は必ずフルパスで指定す る必要があります。なお、パス指定全体を引用符で 囲んでも囲まなくてもかまいません。 例:outpath='G:¥temp'

11.4.7 実行例

以下のように、DM送付効果を分析するために、 samp_dataの中のDM送付先(DM="1")と非送付先 (DM="0")における変数flg=1の出現率の差を基準とす るアップリフトツリーモデル(tree1)を作成し、モ デルを 検証用にとっておいた test_dataにあてはめ て、モデル検証用のモデル形式データセット (TEST_tree1)を作成します。

%dmt_tree(data=samp_data(where=(DM="1")),contr ol=SAMP_DATA(where=(DM="0")),y=flg,target=1,x= sei--nenshu,mincnt=50,maxlvl=10,outmodel=tree1)

%dmt_treescore(model=tree1 ,data=TEST_DATA(where=(DM="1")) ,control=TEST_DATA(where=(DM="0"))

,y=flg,target=1,outmodel=TEST_tree1)

例1:モデルのアップリフトチャート model=パラメータのみ指定します。

%dmt_upliftchart(model=tree1)

モデルに保存されている各ノードにおける処理群の 場合の予測値と対照群の場合の予測値に基づき、処 理群、対照群それぞれについて、他方の群との差の 累積値(累積アップリフト=Σ(差の期待値*ノード件 数))をプロットした図を表示します。

グラフの上部には、以下の情報が表示されます。

最大(Max):累積アップリフト最大値とそのときの 累積ノード件数

現行 (Current)、全データの累積アップリフト値

上記の例では、以下のように結果を読み取ります。

処理群(全619件)のグラフでは、データはすべて実 際に処理群に属しています。したがって、グラフの 一番右端の累積アップリフト値79は、今回のDM送付 先全部を送付したことの効果としてのターゲットの 追加応答数の推定値を表しています。 しかし、tree1モデルを用いると、412件のデータに対 してのみDM送付を行うと、累積アップリフトが113 と最大になることが期待できることがわかります。 (つまり、113-79=34だけ応答数が増える)

一方、対照群(全1,381件)のグラフでは、データは すべて対照群に属しています。したがって、グラフ の一番右端の累積アップリフト値2は、今回のDM非 送付先全体を非送付としたことの効果としてのター ゲットの追加応答数の推定値を表しています。 しかし、1,381件のうち非送付のままとすべき643件 を除く738件を非送付ではなく送付としていたなら、 129の追加応答が得られていたことがわかります。 (つまり、129-2=127応答数が増える)

なお、応答数の実績を集計すると、以下のとおり。

Table of DM by fig							
DM (プロモーション)	flg (購	入有無)					
Frequency Row Pct	なし	あり	Total				
非実施	1114 80.67	267 19.33	1381				
実施	429 69.31	190 30.69	619				
Total	1543	457	2000				

処理群、対照群を合わせると、現行とモデルを用い てDM送付先を最適化した場合を比較すると、以下の ようになります。

	DM送付先			DM非送付先			合計		
	件数	応答数	応答率	件数	応答数	応答率	件数	応答数	応答率
現行	619	190	31%	1381	267	19%	2000	457	23%
モデル	1150	383	33%	850	164	19%	2000	547	27%
差	+ 531	+ 193	+ 3%	- 531	- 103	± 0%	±0	+ 90	+ 4%

例2:相対表示

%dmt_upliftchart(model=tree1,relative=Y)

Uplift Chart using Model: tree1 [For Treatment Data] Relative Cummulative Uplift[Dif. from Control] ([D]-[C]) Max=100(tree1 N=66.56) Current=69.90(tree1 N=100)

1.1

relative=Yを指定すると、プロット点は、絶対値で最 大値の値が100または-100になるように、比例変換さ れます。相対図からは、アップリフト値や件数を絶 対数ではなく、割合(百分率で表示)で読み取るこ とができます。

例えば、上記の処理群のグラフからは、最大アップ リフト値を100として、これは66.56%の件数を選択 した場合となり、現行の累積アップリフトは最大の 69.9%の大きさであることを示しています。

例3:検証結果を加えたモデルのアップリフトチャ ート

%dmt_upliftchart(model=tree1,test=TEST_tree1)

Cum. Data Frequency ordered by Descending M

000 TEST tree1[C]-[D]

tree1[C]-[D]

del DIF [C]-[D]

例4:個々のオブザベーションごとに予測スコアが つけられたデータセットを入力し、予測アップリフ トを表示

%dmt_treescore(model=flg_uplift,data=TEST_DATA, outscore=TEST_uplift_score)

・すべてDM送付先として入力する場合

%dmt_upliftchart(data=TEST_uplift_score,data_pred =D_CONF,control_pred=C_CONF)

1,174件に対してのみ送付すると249の応答増加となることがわかります。最後の2つの終端ノードに該当する顧客には送付しない方が良いことが分かります。

注意:モデルをTEST_DATAにあてはめたときに1件 予測できない欠損データが存在するため、N=1,999 となっています。

・すべてDM非送付先とみなして入力する場合

%dmt_upliftchart(control=TEST_uplift_score,data_pr ed=D_CONF,control_pred=C_CONF)

最初の3つのノードは非送付で良いが、残りは送付す べきです。すべて非送付の場合のアップリフト-89に 対して最大アップリフト159となっており、その差は 248となり、上記のすべて送付したとしたときのアッ プリフト計算結果と一致します。
・送付先データ、非送付先データの両方を入力する 場合

%dmt_upliftchart(data=TEST_uplift_score(where=(D M="1")), control=TEST_uplift_score(where=(DM="0"))

,data_pred=D_CONF,control_pred=C_CONF)

例5:個々のオブザベーションごとに予測スコアと 実績値が付与されたデータセットを入力しての予測 アップリフトの検証

%dmt_upliftchart(data=TEST_uplift_score(where=(D M="1")),

control=TEST_uplift_score(where=(DM="0")) ,data_pred=D_CONF,control_pred=C_CONF ,y=flg,target=1)

注意:実績値(y=,target=)との比較を行う場合は、処 理群と対照群の実績応答差の計算のため、 data=,control=の両方を指定しなければなりません。

例6:複数のアップリフトモデルの予測と実績の比 較

古典的なアップリフトモデルは、処理群と対照群の 各データから別々にモデルを作成し、個人ごとに2種 類のモデルの予測値を与え、それらの差をアップリ フトの推計値とします。この方法で得られたアップ リフトモデルと本アプリケーションのアップリフト モデルを比較します。

/*(古典的モデル)*/

/* (処理群応答率予測モデル) */

%dmt_tree(data=samp_data(where=(DM="1")),y=flg, target=1,x=sei--nenshu,maxlvl=10,mincnt=100,outm odel=D_model)

/* (対照群応答率予測モデル) */

%dmt_tree(data=samp_data(where=(DM="0")),y=flg, target=1,x=sei--nenshu,maxlvl=10,mincnt=100,outm odel=C_model)

/* (各モデルの予測値を検証データの各オブザベーションに付与) */

%dmt_treescore(data=test_data,model=D_model,pr ed=data_pred,outscore=score1,)

%dmt_treescore(data=score1,model=C_model,pred =control_pred,outscore=score2)

/*(新しいアップリフトモデル)*/

%dmt_tree(data=samp_data(where=(DM="1")),contr ol=samp_data(where=(DM="0")),y=flg,target=1,x=sei --nenshu,maxlvl=10,mincnt=50,outmodel=Uplift_mod el)

/* (アップリフトモデルの予測値も検証データに付 与) */

%dmt_treescore(data=score2,model=Uplift_model,d ata_pred=uplift_data_pred,control_pred=uplift_contr ol_pred,outscore=score3) /* (古典モデルと新しいアップリフトモデルの比較) */

%dmt_upliftchart(data=score3(where=(DM="1")),con trol=score3(where=(DM^="1")),data_pred=uplift_data _pred data_pred,control_pred=uplift_control_pred control_pred

,y=flg,target=1,groupnum=10)

Uplift Chart on score3(where=(DM=1)) [For Treatment Data] (10Rank-grouped) Cumulative Uplift[Dif. from Control] ([D]-[C]) Max=110(MODEL 1 N=46), 89(2 N=493), 101(3 N=364), 91(4 N=522) Current=75(MODEL 1 N=620), 63(2 N=620), 59(3 N=620), 71(4 N=620) Com. [D]+[C] 120 100 80 60

Uplift Chart on score3(where=(DM^=1)) [For Control Data] (10Rank-grouped) Cumulative Uplift[Dif, from Treatment] ([C]-[D]) Max=124(MODEL 1 N=618), 97(2 N=448), 109(3 N=420), 54(4 N=268) Current=-15(MODEL 1 N=1,376), -20(2 N=1,376), -32(3 N=1,376), -125(4 N=1,376)

この結果では、新しいアップリフトモデルの方が最 大アップリフトが大きく、検証結果との差が小さく なっています。(常にそうとは限りません)

11.4.8 データセット出力

WORK._UPLIFT にアップリフトチャートの座標値 を格納したデータセットを自動出力します。 (GUI実行モードの場合は座標出力データに名前を 付けることができます。)

アップリフトチャートの座標値ラ	ータの例(model=,test=
指定)	

Users	s¥DMT¥samp	_da	ta¥html¥te	mp¥_u	plifthtml		_	-	_	_	✓ 70%	
_uplift												
Obs	DATA_TYPE	no	termnode	_N	_A	_В	_DIF	TE ST_N	TEST_A	TEST_B	TEST_DIF	l
1	TREATMENT			0	0	0	0	0	0	0	0	1
2	TREATMENT	1	_N11	152	79.9976	20.6416	59.356	152	65.5728	24.8368	40.736	1
3	TREATMENT	2	_N10	275	125.9996	47.6893	78.3103	275	112.4727	47.4585	65.0162	
4	TREATMENT	3	_N01	507	161.0084	66.4581	94.5503	507	159.4527	78.8461	80.6066	1
5	TREATMENT	4	_N00	619	190.0052	110.8325	79.1727	619	189.2783	111.5613	77.717	1
6	CONTROL			0	0	0	0	0	0	0	0	1
7	CONTROL	4	_N00	366	94.7574	145.0092	50.2518	366	97.4658	106.9086	9.4428	1
8	CONTROL	3	_N01	947	182.4303	192.0121	9.5818	947	215.1183	185.5179	-29.6004	1
9	CONTROL	2	_N10	1138	253.8843	234.013	-19.8513	1138	287.9466	220.6428	-67.3038	1
10	CONTROL	1	_N11	1381	381.7552	267.0124	-114.7428	1381	392,7768	260.349	-132.4278	1

DATA_TYPE: 処理群、対照群の区別, no: ノードの 予測応答差が大きい方からの順番, termnode: ノード 番号, _N:累積件数, _A: 処理群の場合の累積予測ア ップリフト, _B: 対照群の場合の累積予測アップリフ ト, _DIF: 累積アップリフト(処理群の場合は _A-_B, 対照群の場合は _B-_A), TEST_N, TEST_A, TEST_B, TEST_DIF: test=指定の場合の検証データ における数値

アップリフトチャートの座標値データの例

(data=,control=,y=,targe=指定の場合)

	_uplift_TEST_CV_TREE3								
Obs	MODEL	DATA_TYPE	_N	_A	_8	_DIF	ACT_A	ACT_B	ACT_DIF
1	1 (PRED) [D]:D_CONF, [C]:C_CONF	TREATMENT	0	0	0	0	0	0	0
2	1 (PRED) [D]:D_CONF, [C]:C_CONF	TREATMENT	147	77.368421057	19.962962958	57.405458099	78	33.327935223	44.672064777
3	1 (PRED) [D]:D_CONF, [C]:C_CONF	TREATMENT	280	127.10825845	49.209036262	77.899222188	128	58.224486947	69.775513053
- 4	1 (PRED) [D]:D_CONF, [C]:C_CONF	TREATMENT	504	160.90136191	67.329518188	93.571843718	158	75.948392671	82.051607329
5	1 (PRED) [D]:D_CONF, [C]:C_CONF	TREATMENT	621	191.19600476	113.68197721	77.514027554	190	119.60510909	70.394890911
6	1 (PRED) [D]:D_CONF, [C]:C_CONF	CONTROL	0	0	0	0	0	0	0
7	1 (PRED) [D]:D_CONF, [C]:C_CONF	CONTROL	335	86.741071419	132.71857924	45.97750782	91.623931624	125	33.376068376
8	1 (PRED) [D]:D_CONF, [C]:C_CONF	CONTROL	929	176.35314041	180.77021435	4.4170739424	171.17750305	172	0.8224969475
9	1 (PRED) [D]:D_CONF, [C]:C_CONF	CONTROL	1132	252.27183958	225,40895781	-26.86288177	247.49329253	210	-37,49329253
10	1 (PRED) [D]:D_CONF, [C]:C_CONF	CONTROL	1379	382,27183959	258.95216768	-123.3196719	378.55451702	266	-112.554517

MODEL:モデル名(値にはモデル番号と指定された 処理群、対照群の予測変数名のペア名がはいってい ます。)さらに、groupvar=を

data=入力データを指定したときは、変数 termnode は存在しません。その他、以下のように変更されま す。

・モデル名が追加される

・GROUPVAR=パラメータを指定した場合はその変数が追加される

 ・GROUPNUM=パラメータを指定した場合は、変数 _RANK_NUMが追加される

オブザベーションは回帰アップリフトモデルの場合 は入力オブザベーションごと。分類木アップリフト モデルの場合は、実績値が1か0

なお、以下のパラメータが指定された場合は、変数 が追加されます。

GROUPVAR=パラメータを指定した場合は指定した変数

・GROUPNUM=パラメータを指定した場合は _PRED_RANK

11.4.9 欠損値の取り扱い

data=入力の場合、いずれかの予測値に欠損が存在す るオブザベーションは計算から除外されます。 回帰アップリフトモデルの場合は実績値が欠損のオ ブザベーションも計算から除外されます。

Data Bring New Insight to Your Business 1 1.1

11.4.10 制限

data=入力データセットを指定し、オブザベーション に対する複数のモデルによる予測値を比較する場合 にdata_pred=パラメータとcontrol_predに指定する 予測変数ペア数の上限は4個までです。

11.4.11 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

e_name e_type nobs lab&i spc&i typ&i zketa _speclen _specnum _errormsg

12. 分析画面 ⑤モデル調整

既存ツリーモデルの構造の一部変更(枝刈り、枝接ぎ)や、モデル構造を変えずに検証データ に基づくモデル予測値の修正を行います。

12.1 枝刈り(dmt_treecut)

DMT_TREECUT 指定画面		X
ッリー	ーモデルの枝刈り	入力指定のリセット
入力モデル (*model=) 枝刈り後の出力モデル (*outmodel=) 最大階層を指定した枝刈り (maxlvl=) 終端ノードに変更する中間ノードの指定 (cutnode=)		表示
刈り取った枝部分の出力モデル (outtwig=)	×	
	~ ~	
ラベル・フォーマット参照データ (labeldat=) [生成コード]	表示	
נשט	✓	実行 前回 表示 戻る
		^ ~

12.1.1 概要

ツリーモデルの枝刈り(DMT_TREECUT) はツリーモ デルの一部を切り取り(枝刈りと呼ばれます)、モデ ルをより単純にします。一般に、ツリーモデルでは、 末端に近いノードほど該当件数が少なくなるため、 モデル作成用データへの過剰適合が起こりやすくな ります。そのため、モデルの枝刈りは、過剰適合を 避ける効果があると考えられています。

DMT_TREECUTを用いた枝刈りは、特定の中間ノー ドの名前を指定する、もしくは枝刈りをおこなう階 層数を指定する、もしくは検証モデルを指定するこ とにより行います。指定条件に合致する中間ノード から分岐している下位ノードはすべて削除され、そ の中間ノードは終端ノードに変更されます。1回の実 行で同時に最大100個までの中間ノードの枝刈りが 可能です。

12.1.2 指定方法

(コマンド実行モードでの指定)

%dmt_treecut(help,model=,test=,cutnode= ,outmodel=,outtwig=,maxlvl=, ,pctf=7.2,meanf=best8.,aicf=best8. ,d_label=[D],c_label=[C],dif_label=[D]-[C] language=JAPANESE))

(GUI実行モードでの変更点)

・help は指定不可。

・枝刈り後のツリーモデルの分岐表を表示するとき に用いられるラベル・フォーマット参照データ Data Bring New Insight to Your Business 12 分析画面 ⑤モデル調整 12.1 枝刈り (dmt_treecut)

(labeldat=)を指定可能。

(必須パラメータ)

以下の2個のパラメータは常に必須です。

入力モデル (model=) … 入力モデルデータセット名の指定. 枝刈り後の出力モデル (outmodel=) … 枝刈り後の出力モデルデータセット名の指定.

(枝刈り指定パラメータ)

以下の3個のパラメータは枝刈り方法を指定します。 3個の中の1つのパラメータは必須です。ただし、 cutnode=とmaxlvl=については両方を指定すること が可能です。両方指定した場合は両者いずれかの条 件を満たすノードが枝刈りされます。test=パラメー タは他の2つのいずれとも同時に指定できません。単 独で指定します。

検証モデルによる枝刈り (test=)

… 各ノードから分岐する2つの子ノード間のターゲ ット応答の大小関係を入力モデルと検証モデル間 で比較し、矛盾する親ノードを枝刈りします。この 指定は単独で指定します。

- 終端ノードに変更する中間ノードの指定 (cutnode=) … 枝刈りを行う中間ノード名の指定.(例 N001 N0111)
- 最大階層を指定した枝刈り (maxlvl=) … 指定の階層がツリーの最大階層となるようまと めて枝刈りを行う.

(オプションパラメータ)

以下の**10**個のパラメータは任意指定です。(=の右辺 の値はデフォルト値を表しています)なお、pctf=, meanf=, aicf=, d_label=, c_label=, dif_label=パラメー タは実行ログ画面に出力される枝刈り後のモデルの 概要表示にのみ用いられます。

help ... 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)

- 刈り取った枝部分の出カモデル (outtwig=) … 刈りとった枝部分のモデル形式出カデータセット 名の指定(cutnode=指定に対応)
- 百分率の表示フォーマットの指定 (pctf=7.2)
- 平均値・標準偏差の表示フォーマットの指定

(meanf=best8.)

- AIC値の表示フォーマットの指定 (aicf= best8.)
- アップリフトモデルにおける処理群(DATA)を表す記号 (d_label=[D])
- アップリフトモデルにおける対照群(Control)を表す記号 (c_label=[C])

アップリフトモデルにおける処理群-対照群間の差を表 す記号 (dif_label=[D]-[C])

言語の選択 (language=JAPANESE)

ラベル・フォーマット参照データ (labeldat=) (GUI実行モードでのみ有効)

12.1.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

検証モデルによる枝刈り (test=)

検証データにモデルを適用したモデル形式データセット(検証モデル)名を入力します。検証モデルの 中で子ノードのターゲット出現率もしくはターゲッ ト平均値またはそれらの処理群実施群間の差が逆転 している親ノードを探して、まとめて枝刈りします。 (注意:V1.2ではGUI実行モードでのみ、test=を指 定し、かつ、cutnodeボタンを押して出現する「逆転 ノード」アイテムを選択することにより、この機能 を実行していましたが、V1.3ではtest=を指定するだ けで実行するように変更しました。)

枝刈り後の出力モデル (outmodel=)

枝刈り後のモデルデータセットの出力先の名前をつ けます。このパラメータは省略できません。例: outmodel=new_model

最大階層を指定した枝刈り (maxlvl=)

1-19 の範囲の整数を指定します。指定の階層に該当 する中間ノードをまとめて枝刈りします。このパラ メータとcutnode=パラメータのいずれか1つ、もしく は両方指定できます。両方指定した場合は、いずれ かの条件を満たすノードが枝刈りされます。なお、 maxlvl=指定による枝データセット(outtwig=データ セット)は生成されません。例:maxlvl=3

終端ノードに変更する中間ノードの指定 (cutnode=)

枝刈りを行う中間ノード名を指定します。複数の中間ノードの枝刈り指定を行う場合は、ノード名をブランクで区切って指定します。ただし、ノード名の最初の"_"(アンダースコア,アンダーバー)は省略して指定しなければなりません。最大100個のノード名が指定可能です。

例:cutnode=N01 N101 N100001

刈り取った枝部分の出力モデル (outtwig=)

cutnode=指定による枝刈り操作で、元のモデルから 除去された枝部分の各部分モデルをモデル形式デー タセットとして出力します。元の中間モデルをルー トノードとみなしたノード番号が新たに割り振られ ます。枝刈りした部分モデルは使う必要が無いかも しれませんが、DMT_TREEADDを用いて元に戻した い場合、接ぐ枝として使えます。デフォルトは

_TWIG_xxxx1 _TWIG_xxxx2 ... _TWIG_xxxxk ただ し、**xxxx1 xxxx2 ... xxxk** はcutnode=パラメータで指 定した枝刈り先中間ノード名を意味します。 名前を付ける場合は、outnode=パラメータに指定し

た枝刈り先中間ノードの指定順に対応して同じ数の 名前を付ける必要があります。 例:outtwig =twig1 twig2

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

12.1.4 GUI 実行モードで有効なパラメータの詳細

ラベル・フォーマット参照データ (labeldat=) 枝刈り後のツリー分岐表に変数ラベルと値ラベルの 表示を行うために指定します。(GUI 実行モードで のみ指定できます。モデル作成時の入力データを記 録していますので、存在する場合は、自動入力され ます。)

12.1.5 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードで は指定できません。) 例:%dmt_treecut(help)

12.1.6 実行例

mincnt=10を指定してノード数の多いツリーモデル tree1 と tree1 を検証データにあてはめたモデル形 式データセット(検証ツリー) TEST_tree1を作成し ます。

%dmt_tree(data=samp_data,y=flg,target=1,x=sei--D M,mincnt=10,maxlvl=10,outmodel=tree1)

(ログ)

生成されたモデルの概要 ... 出力モデルデータセット: tree1 ターゲット変数 変数ラベル: FLG 購入有無 ターゲット値: "1" 最大分割レベル: 10 生成された終端ノードの数: 48 分析データ全体の平均ターゲット出現率: 22.85% 48 個の終端ノードのターゲット出現率範囲: 0.00% から 100.00% 分割前の分析データの全体エントロピー: 0.7753872882 48 個の終端ノード分割後の全体エントロピー: 0.3050956015

%dmt_treescore(model=tree1,data=test_data,y=flg,t arget=1,outmodel=TEST_tree1)

(ログ)

生成されたモデル形式データセットの概要 ... 出力モデル形式データセット: TEST_tree1 ターゲット変数 変数ラベル: FLG 購入有無 ターゲット値: "1" 最大分割レベル: 10 生成された終端ノードの数: 48 分析データ全体の平均ターゲット出現率: 22.80% 48 個の終端ノードのターゲット出現率範囲: 0.00% から 100.00% 分割前の分析データの全体エントロピー: 0.774509 48 個の終端ノード分割後の全体エントロピー: 0.355666 例1:検証モデルを指定した枝刈り %dmt_treecut(model=tree1,test=TEST_tree1 ,outmodel=tree1_cut1)

(ログ)

ノート: tree1 と TEST_tree1 を比較した結果、5 個の逆転親ノードが存在します.

_N10001 _N110101 _N11100011 _N111001 _N111100

ノート: 逆転親ノードを枝刈りし、終端ノードに変換したモデルデータセット tree1_cut1 を作成します.

(途中省略)

枝刈り後のモデルの概要 ... 出力モデルデータセット: tree1_cut1 最大分割レベル: 8 生成された終端ノードの数: 38 分析データ全体の平均ターゲット出現率: 22.85% 38 個の終端ノードのターゲット出現率範囲: 0.00% から 100.00% 分割前の分析データの全体エントロピー: 0.775387 38 個の終端ノード分割後の全体エントロピー: 0.328765

この場合は、5個の中間ノードを終端ノードに変更したため、終端ノード数が48個から38個に減っています。

例2:最大階層数を指定して枝刈り %dmt_treecut(model=tree1,maxlvl=3,outmodel=tree1_cut2)

(ログ)

枝刈り後のモデルの概要 ... 出力モデルデータセット: tree1_cut2 最大分割レベル: 3 生成された終端ノードの数: 8 分析データ全体の平均ターゲット出現率: 22.85% 8 個の終端ノードのターゲット出現率範囲: 0.00% から 78.98% 分割前の分析データの全体エントロビー: 0.775387 8 個の終端ノード分割後の全体エントロピー: 0.480837

例3:特定の中間ノードを指定して枝刈り %dmt_treecut(model=tree1 ,cutnode=N1 N001,outmodel=tree1_cut3)

(ログ)

枝刈り後モデルデータセット: tree1_cut3 が生成されました. 枝データセット: _TWIG_N1 が生成されました. 枝データセット: _TWIG_N001 が生成されました.

... DMT_TREECUT 実行が終わりました.

枝刈り後のモデルの概要 ... 出力モデルデータセット: tree1_cut3 最大分割レベル: 6 生成された終端ノードの数: 9 分析データ全体の平均ターゲット出現率: 22.85% 9 個の終端ノードのターゲット出現率範囲: 0.00% から 52.94% 分割前の分析データの全体エントロビー: 0.775387 9 個の終端ノード分割後の全体エントロビー: 0.571113

12.1.7 画面出力

コマンド実行モードでは画面出力はありません。 GUI実行モードでは、実行後、枝刈り後のモデルをツ リー分岐表で表示する機能があります。

12.1.8 データセット出力

outmodel=パラメータに指定されたデータセットに 枝刈り後のモデルデータセットが出力され、outtwig= パラメータに指定されたデータセットに枝刈りによ って除去されたモデル部分が出力されます。

モデルデータセットと同じ変数項目が含まれますが、 outtwig=データセットのノード番号はルートノード を表す_Nから番号が振り直されて出力されます。

コマンド実行モードで、test=パラメータを指定した 場合は、モデルと検証モデルの逆転ノード名を _PROBLEM_PNODE という名前のデータセットを workライブラリに生成します。この中には、枝刈り すしたノード名が含まれています。

12.1.9 逆転ノードに関するレポート

test=パラメータを指定すると、すべての親ノードについて、ノード分岐後の2つの子ノード間のモデル応答の大小関係がモデルと検証モデル間で逆転していないかどうかをまずチェックします。もしも逆転ノードが見つかれば、上位ノードにまとめた上で、以下のようにログにレポートします。

ノート: model.tree10 と test.TEST_tree10 を比較した結果、6 個の逆転親ノ ードが存在します.

_N10101 _N10110 _N110101 _N111000 _N1110010 _N111100

ノート: 逆転親ノードを枝刈りし、終端ノードに変換したモデルデータセット outmodel.NO_edakari を作成します。

一方、もしも逆転ノードが見つからなかった場合は、 以下のメッセージをログに書き出して処理を終了し ます。

ノート:model.tree10 と test.tree10 を比較しましたが、逆転ノードは存在しま せん. ノート:DMT_TREECUTを終了します.出力データセットは作成されません でした.

12.1.10 制限

cutnode=指定で1度に指定できる枝刈り中間ノード 数は最大100です。101個以上の枝刈り対象ノード指 定を行う場合は、繰り返し実行してください。なお、 maxlvl=指定およびtest=指定の枝刈りにはこの制限 はありません。

12.1.11 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。なお、&iは数字を 表し、たいていの場合、説明変数に指定した変数の 数だけ存在する可能性があることを表します。

\$NODE_C \$NODE_D \$_ORDER \$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。なお、&iは数字を表し、たいていの場合、 説明変数に指定した変数の数だけ存在する可能性が あることを表します。

nobs zketa e_name e_type _errormsg

12.2 枝接ぎ(dmt_treeadd)

DMT_TREEADD 指定画面	×
ツリーモデルの枝接ぎ	入力指定のリセット
入力モデル (*model=) … 表示 枝接ぎ後の出力モデル (*outmodel=) 表示 枝接ぎを行う終端ノードの指定 (*addnode=) …	
枝接ぎ入力モデル (*addtwig=) …	
ラベル・フォーマット参照データ (labeldat=) 表示 [生成コード]	
∨ [ログ]	実行 前回 戻る 戻る
	~

12.2.1 概要

ツリーモデルの枝接ぎ (DMT_TREEADD) はツリーモ デルの終端ノードに別のツリーモデルを接ぎ足し、 より大きなモデルにします。

大局的に見てターゲット変数と関連が強い説明変数 グループを用い、mincnt=パラメータをAUTOもしく は比較的大きな値に設定して作成したモデルに、局 地的に説明力があると思われる特定の説明変数グル ープをで作成した小さなモデルを接ぎ足すことによ り、精度と納得性を両立させたモデルに修正できる かもしれません。

DMT_TREEADDを用いた枝接ぎは、特定の終端ノードの名前を指定することにより行います。指定された終端ノードごとに枝接ぎを行う小さなモデルの名前を指定します。枝接ぎされた終端ノードは中間ノ

ードに変更され、枝接ぎしたモデルのノード番号は 自動的に全体のモデルの中で統一されたノード番号 に変更されます。1回の実行で同時に最大100個まで の終端ノードを指定した枝接ぎが可能です。

12.2.2 指定方法

(コマンド実行モードでの指定)

%dmt_treeadd(help,model=,addnode=,addtwig= ,outmodel= ,language=JAPANESE)

(GUI実行モードでの変更点)

- ・help は指定不可。
- ・枝刈り後のツリーモデルの分岐表を表示するとき

Data Mine Tech Ltd. Data Bring New Insight to Your Business 1

12.2 枝接ぎ(dmt_treeadd)

に用いられるラベル・フォーマット参照データ (labeldat=)を指定可能。

(必須パラメータ)

以下の4個のパラメータは省略できません。

入力モデル (model=)

 … 入力モデルデータセット名の指定.

 枝接ぎを行う終端ノードの指定 (addnode=)

 … 枝接ぎを行う終端ノード名の指定.(例 N001 N0111)

 枝接ぎ入力モデル (addtwig=)

 … 枝接ぎする入力モデルデータセット名の指定 (addnode=指定に対応)
 枝刈り後の出力モデル (outmodel=)

 … 枝刈り後の出力モデルデータセット名の指定.

(オプションパラメータ)

以下の3個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

help … 指定方法のヘルプメッセージの表示.(コマンド実 行モードでのみ有効) 言語の選択 (language=JAPANESE) ラベル・フォーマット参照データ (labeldat=) (GUI実行モードでのみ有効)

12.2.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

枝接ぎ後の出力モデル (outmodel=)

枝接ぎ後の出力モデルデータセットの名前をつけま す。このパラメータは省略できません。例: outmodel=new_model

枝接ぎを行う終端ノードの指定 (addnode=)

枝接ぎを行う終端ノード名を指定します。このパラ メータは省略できません。複数の中間ノードの枝接 ぎ指定を行う場合は、ノード名をブランクで区切っ て指定します。ただし、ノード名の最初の "_"(アン ダースコア,アンダーバー) は省略して指定しなけれ ばなりません。最大100個のノード名が指定可能です。 例:addnode=N000 N001

枝接ぎ入力モデル (addtwig=)

枝接ぎ操作によりモデルの終端ノードに接ぎ足そう とする枝部分のモデルデータセットを入力します。 このパラメータは省略できません。addnode=パラメ ータに指定した枝接ぎ先終端ノードと同数のモデル 形式データセットをaddnode=パラメータ指定順に対 応してaddtwig=パラメータに指定する必要がありま す。 例:addtwig =twig1 twig2

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

12.2.4 GUI 実行モードで有効なパラメータの詳細

ラベル・フォーマット参照データ(labeldat=) 枝接ぎ後のツリー分岐表に変数ラベルと値ラベルの 表示を行うために指定します。(GUI 実行モードで のみ指定できます。)モデル作成時の入力データを 記録していますので、存在する場合は、自動入力さ れます。

12.2.5 コマンド実行モードで有効なパラメータの詳細

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI実行モードでは 指定できません。) 例:%dmt_treeadd(help)

12.2.6 実行例

例1:特定の終端ノードに別のツリーを枝接ぎする

(例示用のモデルtree1を作成)

%dmt_tree(data=samp_data,y=flg,target=1 ,x=sei nenrei jukyo kazoku_kosei gakureki shokushu kinmusaki gyoshu nenshu ,mincnt=100,maxlvl=2,outmodel=tree1)

(tree1のモデル分岐表)

%dmt_treetab(model=tree1,labeldata=samp_data)

			件数 割 合%	ター ゲット 再現 率96	ター ゲット 出現 率%
LVL0	LVL1	LVL2			
ROOT:22.85% (457/2,000)	N0: 4.56%(46/1,008) JUKYO 住居="2 持家(家 族所有)","1 持家(自己所 有)","6 寮","7 社宅"	N00: 2.74%(24/877) KINMUSAKI 勤務先形態 ="A 企業","D 官公庁"," 不明"	43.85	5.25	2.74
		N01: 16.79%(22/131) KINMUSAKI 勤務先形態 ="C 自営(個人)","B 自営 (法人)"	6.55	4.81	16.79
	N10: 16.24%(57/351) GAKUREKI 最終学歴=" 不明","3 専門学校","4 大 学"	17.55	12.47	16.24	
		N11: 55.23%(354/641) GAKUREKI 最終学歴="5 大学院","2 高校","1 中 学"	32.05	77.46	55.23

終端ノード**N00**に性別と年齢を説明変数として分岐 させるツリーを作成し、枝接ぎする。

(所属ノード番号をつける)

%dmt_treescore(data=samp_data,model=tree1

,outscore=score1)

(ノードN00の所属データについて変数DMで分岐す るツリーモデルN00_tree1を作成)

%dmt_tree(data=score1(where=(_NODE="_N00")),y =flg,target=1

,x=DM,mincnt=50,maxlvl=1,outmodel=N00_tree1)

(N00_tree1のモデル分岐表)

%dmt_treetab(model=N00_tree1,labeldata=samp_d ata)

DMT_TREE モデルテーブル (モデルデータセット: N00_tree1)

		件数割 合%	ターゲット再現 率%	ターゲット出 現率%
LVL0	LVL1			
ROOT:2.74% (24/877)	N0: 0.00%(0/609) DM プロモーショ ン=''0 非実施''	69.44	0.00	0.00
	N1: 8.96%(24/268) DM プロモー ション="1 実施"	30.56	100.00	8.96

(tree1のノードN00にツリーモデルN00_tree1を枝接 ぎ)

%dmt_treeadd(model=tree1,addnode=N00,addtwig= N00_tree1,outmodel=tree1_add)

(ログ)

枝接ぎ後モデルデータセット:tree1_add が生成されました. 枝データセット:NO0_TREE1 が 入力モデルデータセットノード _NO0 に接 ぎ木されました.
DMT_TREEADD 実行が終わりました.
… 正しいモデル予測値やエントロビ減少値を得るために は、%DMT_TREESCORE を用い、このモデルを分析データセットに適用してください. (例)%DMT_TREESCORE(model=今回作成したモデルデータセット,data=分 析データ,y=ターゲット変数名, target=ターゲット値,outmodel=正しい予測値やエントロピー減少値を持つ出力 モデルデータセット)

(tree1_addモデルのツリー分岐表) %dmt_treetab(model=tree1_add,labeldata=samp_da ta)

				件数 割 合%	ター ゲット 再現 率%	ター ゲット 出現 率%
LVL0	LVL1	LVL2	LVL3			
RODT.22.88% NU (457/2,000) UU 版 有 1 以 時 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	N0: 4.56%(46/1,008) JUKYO 住居="2 持家(家 族所有)","1 持家(自己所 有)","6 賨","7 社宅"	N00: 2.74%(24/877) KINMUSAKI 勤務先形態 ="A 企業","D 官公庁"," 不明"	N000: 0.00% (0/609) DM プロ モーション="0 非実施"	30.45	0.00	0.00
			N001: 8.96% (24/268) DM プ ロモーション ="1 実施"	13.40	5.25	8.96
		N01: 16.79%(22/131) KINMUSAKI 勤務先形態 ="C 自営(個人)","B 自営 (法人)"		6.55	4.81	16.79
	N1: 41.43%(411/992) JUKYO 住居="5 アパー ト"," 不明","4 借家","3 賃貸マンション"	N10: 16.24%(57/351) GAKUREKI		17.55	12.47	16.24
		N11: 55.23%(354/641) GAKUREKI 最終学歴="5 大学院","2 高校","1 中 学"		32.05	77.46	55.23

DMT_TREE モデルテーブル (モデルデータセット: tree1_add)

注意:この場合は、分析データに基づいて枝接ぎ用 モデルを作成していますので、生成されたモデルに 分析データを再度適用して予測値を調整する必要は ありません。

例2: すべての終端ノードに対して、有効なツリー

モデルを枝接ぎする(**注意**)この例示はGUI実行モー ドでは直接サポートされていません。コマンド実行 モードで実行してください。

(例1のscore1作成までは同じ処理を行います)

(score1から終端ノードの値をすべて抽出し、終端ノ ードの種類数をマクロ変数 &n に、終端ノードの名 前を &term1, &term2, ..., &&term&n に格納する)

proc freq data=score1;

tables _NODE/noprint out=termnodes(keep=_NODE);

run:

data null ;

if _n_=1 then call symput("n",compress(n));

set termnodes nobs=n;

call symput("term"||left(_n_),compress(_NODE)); run;

(マクロ変数値の確認)

%put &n, &term1, &term2, ... , &&term&n;

(ログ)		
4, _N00, _N01, , _N11		

(終端ノード別にDMの値によって分岐する1階層のツリーモデルを作成するマクロプログラム)
%macro create_twigs;
%do i=1 %to &n;
%dmt_tree(data=score1(where=(_NODE="&&term&i")),y=flg,target=1,x=DM,mincnt=50,maxlvl=1,outmodel=&&term&i...tr

,x=DM,mincht=50,maxivi=1,outmodel=&&term&l.._tr ee1) %end;

%mend create_twigs; %create_twigs

(N00のログ)

```
入力分析データセット: score1(where=(_NODE="_N00"))
オブザベーション数: 877
最小必要ノード件数:50
最大分割レベル:1
 ターゲット変数 変数ラベル: FLG 購入有無
 ターゲット値: "1'
 ターゲット値の出現率を基準としたツリー分析を行います ...
数値変数の個々の値をカテゴリ値に設定する最大種類数: CEIL(1+log2(N)), N
は非欠損件数
数値変数のカテゴリ生成方法(最後のカテゴラリ件数が少ない場合1つ前のカ
テゴリに併合するか否か): N
説明変数 (尺度) 変数ラベル:
(1) DM (名義) プロモーション
親ノード _N(N=877,P=2.74%) を分割中です.
#/> 「___(N=007, =2.14%) を力前すてす。
子ノード _N0(N=609, P=0.00%) と _N1(N=268, P=8.96%) が DM によって
生成されました。
... DMT_TREE 実行が終わりました.
生成されたモデルの概要 ..
出力モデルデータセット:_N00_tree1
 ターゲット変数 変数ラベル: FLG 購入有無
 ターゲット値: "1"
最大分割レベル:1
生成された終端ノードの数:2
 分析データ全体の平均ターゲット出現率: 2.74%
2 個の終端ノードのターゲット出現率範囲: 0.00% から 8.96%
```

分割前の分析データの全体エントロピー: 0.1810054983

Data Bring New Insight to Your Business 1 12.2 枝接ぎ (dmt_treeadd)

2 個の終端ノード分割後の全体エントロピー: 0.1329223405

(N01のログ) (有効なツリーモデルは生成されず)

入力分析データセット: score1(where=(_NODE="_N01")) オブザベーション数: 131 最小必要ノード件数: 50 最大分割レベル: 1 ターゲット変数 変数ラベル: FLG 購入有無

ターゲット値:"1" ターゲット値:"1" ターゲット値の出現率を基準としたツリー分析を行います ...

数値変数の個々の値をカテゴリ値に設定する最大種類数: CEIL(1+log2(N)), N は非欠損件数 数値変数のカテゴリ生成方法(最後のカテゴラリ件数が少ない場合1つ前のカ テゴリに併合するか否か): N 説明変数 (尺度) 変数ラベル: (1) DM (名義) プロモーション

親ノード _N(N=131,P=16.79%) を分割中です. 有効な説明変数の併合パターンが存在しません. 親ノード _N は分割されませんでした. ... ツリーモデルは生成されませんでした.

 入力分析データセット: score1(where=(_NODE="_N10"))
 オブザベーション数: 351
 最小必要ノード件数: 50
 最大分割レベル: 1
 ターゲット変数 変数ラベル: FLG 購入有無
 ターゲット値の出現率を基準としたツリー分析を行います ...
 数値変数の個々の値をカテゴリ値に設定する最大種類数: CEIL(1+log2(N)), N
 は非欠損件数
 数値変数のカテゴリ生成方法(最後のカテゴラリ件数が少ない場合1つ前のカ テゴリに併合するか否か): N
 説明変数 (尺度) 変数ラベル:
 (1) DM (名義) プロモーション
 親ノード _N(N=351,P=16.24%) を分割中です.
 有効な説明変数が存在しません.

親ノード _N は分割されませんでした. ... ツリーモデルは生成されませんでした

(N11のログ)

入力分析データセット: score1(where=(_NODE="_N11"))
オフザペーション数: 641
取小必要ノート件数:50 目上()物() - バル・4
取入分割レヘル:1
ター/ツト変数 変数ノベル:FLG 購入有悪 ターゲット値:"1"
ターゲット値の出現率を基準としたツリー分析を行います
数値変数の個々の値をカテゴリ値に設定する最大種類数: CEIL(1+log2(N)), N
は非欠損件数
数値変数のカテゴリ生成方法(最後のカテゴラリ件数が少ない場合1つ前のカ ニ 、いっゆ^ トス・エン・ハ
デコリに併合するか合か):N 芝唱恋教(日席)恋教与され
説明変数 (尺度) 変数フヘル: (4) DM (名美) プロエーション
(I) DM (名義) フロモーション
親ノード _N(N=641,P=55.23%) を分割中です. 子ノード _NO(N=415,P=50.84%) と _N1(N=226,P=63.27%) が DM によ って生成されました.
DMT_TREE 実行が終わりました.
生成されたモデルの概要
出力モデルデータセット: _N11_tree1
ターゲット変数 変数ラベル: FLG 購入有無
ターゲット値: "1"
最大分割レベル:1
生成された終端ノードの数:2
分析データ全体の平均ターゲット出現率: 55.23%
2 個の終端ノードのターケット出現率範囲: 50.84% から 63.27%
分割則の分析アーダの全体エントロビー: 0.9921046454
2 個の終端ノード分割後の主体エントロビー: 0.9817244873

(有効なツリーモデルを各終端ノードに枝接ぎ) %macro do_add;

%dmt_treeadd(model=tree1,addnode= %do i=1 %to &n; %if %sysfunc(exist(&&term&i.._tree1)) %then % do: %str(&&term&i) %end; %end: .addtwig= %do i=1 %to &n; %if %sysfunc(exist(&&term&i.._tree1)) %then % do: %str(&&term&i.._tree1) %end; %end: ,outmodel=tree1_add_allterms) %mend do_add; %do add

(ログ)

枝接ぎ後モデルデータセット: tree1_add_allterms が生成されました. 枝データセット: _N00_TREE1 が 入力モデルデータセットノード _N00 に 接ぎ木されました. 枝データセット: _N11_TREE1 が 入力モデルデータセットノード _N11 に 接ぎ木されました.

(tree1_add_alltermsモデルのツリー分岐表) %dmt_treetab(model=tree1_add_allterms,labeldata= samp_data)

DMT_TREE モデルテーブル (モデルデータセット: tree1_add_allterms)

				件数割 合%	ターゲッ ト再現 率96	ターゲッ ト出現 率%
LVLO	LVL1	LVL2	LVL3			
ROOT22.285% (437/2.000) (437	N0: 4.56%(46/1,008) JUKYO 住居="2 持家(家族所有)","1 持家(自己所有)","6 查","7 社	N00: 2.74%(24/877) KINMUSAKI 勤務先形證="A 企業","D 官公疗"," 不明"	N000: 0.00%(0/609) DM プロモーション ="0 非実施"	30.45	0.00	0.00
	£		N001: 8.96%(24/268) DM プロモーション ="1 実施"	13.40	5.25	8.96
		N01: 16.79%(22/131) KINMUSAKI 勤務先形態="C 自営(個人)","B 自営(法人)"		6.55	4.81	16.79
	N1: 41.43%(411/992) JUKYO 住居="5 アバート","不明","4 信家","3 賃貸マンション"	N10: 16.24%(57/351) GAKUREKI 最終学歴=" 不 明","3 専門学校","4 大学"		17.55	12.47	16.24
		N11: 55.23%(354/641) GAKUREKI 最終字歷="5 大 学院","2 高校","1 中学"	N110: 50.84% (211/415) DM プロ モーション="0 非実 施"	20.75	46.17	50.84
			N111: 63.27% (143/226) DM プロ モーション="1 実施"	11.30	31.29	63.27

12.2.7 データセット出力

outmodel=パラメータに指定されたデータセットに 枝接ぎ後のモデルデータセットが出力されます。

12.2.8 制限

同時に枝接ぎできる終端ノード数は最大100です。 100を超える場合は繰り返して実行します。

12.2.9 枝接ぎ後の注意

枝接ぎ部分のモデルが、枝接ぎ前のモデルと共通の 分析データセットの枝接ぎ先の終端ノードに対して 作成したものである場合を除いて、ノード件数、タ ーゲット件数、ターゲット平均値、ターゲット標準 偏差、エントロピー減少量、群内平方和減少量など の統計量は、枝接ぎ後の全体モデルにおいて正しい 値を保持しているとは限りません。その場合は、 DMT_TREESCOREを用い、元の入力データセットに 対し枝接ぎ後のモデルを適用し、正しい統計量を再 計算する必要があります。DMT_TREEADDを実行す ると、その意味のメッセージを常にログに書き出し ます。必要がある場合は再計算を行ってください。

12.2.10 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のグローバルマクロ変数が作成されます。 これらは実行後も削除されません。同じ名前のグロ ーバルマクロ変数は上書きされますので注意してく ださい。なお、&iは数字を表し、たいていの場合、説 明変数に指定した変数の数だけ存在する可能性があ ることを表します。

nobs zketa e_name e_type _errormsg

12.3 予測值修正(dmt_treescore outmodel=)

DMT_TREESCORE モデル形式データ作成指定画面	×
新しいデータを基準にモデル予測化	直修正 入力指定のリセット
入力モデル (*model=) … 表示 入力データ (*data=) … 表示 where条件 対照データ (*control=) … 表示 where条件 ターゲット変数 (y=) … …	
ターゲット値(target=)	sort htn
出力モデル形式データ (outmodel=) 表示	sorcom
アンマッチ処理(unmatch=) (の欠損 〇予測値が高い方 (件数が多い方 〇予測値が高い方 [生成コード]	
▲	
表示するデータ件数の上限 ② 変数ラベルの表示 ③ 値ラベルの表示 [ログ] ③ 別々の画面に表示	実行 戻る

12.3.1 概要

新しいデータを基準にモデル予測値修正

(DMT_TREESCORE)はモデルに採用されている説 明変数すべてとターゲット変数を含む入力データセ ットに対してツリーモデルを適用し、入力データセ ットにおけるノード別件数、および分類木の場合は ターゲット件数、回帰木の場合はターゲット変数の 平均値と標準偏差、さらにアップリフトでは関連す る他の統計量を集計し、モデルデータセットと同じ 形式のデータセット(モデル形式データセット)を 出力します。

検証用データセットにDMT_TREESCOREを適用したモデル形式データセットを作成しておくと、以下の各マクロのmodel=パラメータとtest=パラメータに同時指定することにより、モデル作成データとモデル検証データにおける統計量を同時表示することができ、予測と実績との比較検証などが効率良く行

えます。

ツリー分岐表(DMT_TREETAB)
 ツリーノード定義表(DMT_NODETAB)
 ゲインチャート・収益チャート(DMT_GAINCHART)、
 アップリフトチャート(DMT_UPLIFTCHART)
 比較プロット(DMT_COMPAREPLOT)
 正誤表(DMT_CORRECTTAB)
 モデルの枝刈り(DMT_TREECUT)

ツリーモデルをデータに適用する場合、予測値が付けられないケースが発生することがあります。 DMT_TREESCOREはこの問題に unmatch=パラメ ータで対処しています。デフォルトはアンマッチの まま(予測値は欠損)に設定されますが、強制的に ノード分岐を行う3通りのオプション(いずれも予測 値を算出します)を選択可能です。

(予測値が付けられないケースが発生する理由)

予測値を付ける方法は非常に単純です。各オブザベ ーションごとに、モデルの分岐説明変数値を参照し ながら、所属中間ノードを逐次的に辿っていき、最 終的に達した終端ノードのターゲット出現率を予測 値とします。

しかし、ツリーモデルの各ノード分岐規則は、モデ **ル作成データに実際に存在した**説明変数値に基づい て定義されます。階層が深くなるほどノード件数は 少なくなりますので、分岐変数に選ばれた説明変数 の値の分布は必ずしも本来存在する可能性のある範 囲をすべてカバーしているとは限りません。このた め、予測値をつけたいデータの文字タイプ説明変数 が分岐変数に採用されているノードにおいて、分岐 の途中で分岐先不明(アンマッチ)となるカテゴリ を持つオブザベーションが入力される可能性が生じ ます。数値タイプ変数の場合は、常にあるしきい値 に基づく範囲でノード分岐先の定義がなされていま すので、分岐先不明となる心配はほとんどありませ んが、唯一、モデル作成時には存在しなかった欠損 値が入力オブザベーションに存在したときにアンマ ッチとなり得ます。このような理由で、ツリーモデ ルをデータに適用する場合、予測値が付けられない ケースが発生することがあります。

DMT_TREESCOREはこの問題に unmatch=パラメ ータで対処しています。デフォルトはアンマッチの まま(予測値は欠損)に設定されますが、強制的に ノード分岐を行う3通りのオプション(いずれも予測 値を算出します)を選択可能です。

12.3.2 指定方法

(コマンド実行モードでの指定)

%dmt_treescore(help,data=,control=,model=, outmodel=,y=,target=,unmatch=MISSING, language=JAPANESE)

(GUI実行モードでの変更点)

・help は指定不可。

(必須パラメータ)

以下の2個のパラメータは常に省略できません。

入力データ (data=) … 入力データセット名の指定 入力モデル (model=) … 入力モデルデータセット名の 指定.

以下の1個のパラメータはモデルがアップリフトモ デルの場合は省略できません。

入力対照データ (control=) ... 対照群の入力データセ ット名の指定

(モデル形式データセットを出力するためのパラメータ)

以下の 3個のパラメータ outmodel=, y=, target= は data=入力データセットに (アップリフトモデルの場 合はcontrol=入力対照データセットにも) model=モデ ルを適用した場合、ノード別該当件数やターゲット 集計値を計算し outmodel= データセットに出力す るために用います。モデル形式データセットを出力 する場合、分類木および分類木アップリフトモデル の場合、これら3つはすべて必須です。回帰木および 回帰木アップリフトモデルの場合はtarget=パラメー タを除く2つが必須指定です。

出力モデル形式データ (outmodel=)

... モデルを入力データセットに適用した場合の ノード別実績件数とターゲット件数を出力する モデル形式データセット名の指定.

ターゲット変数 (y=) ... ターゲット変数名の指定.

ターゲット値 (target=) … ターゲット値の指定. (回帰木モデル適用の 場合は指定してはいけません)

(アンマッチ処理のためのパラメータ)

アンマッチ処理 (unmatch=MISSING)

… アンマッチデータ(モデルのノード分割変数カテ ゴリに該当しないカテゴリを持つオブザベーシ ョン)への対処方法の選択.

(その他のパラメータ)

以下の2個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

- help … 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効)
- 言語 (language=JAPANESE) … ログやメッセージ を表示する言語の選択

12.3.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

入力データ (data=) 入力データセット名を指定します。このパラメータ は省略できません。例: data=a

ターゲット変数 (y=) モデルをデータに適用するとき、データに含まれる ターゲット変数を指定します。分類木の場合は **ター** ゲット値(target=) を同時に指定しなければなりませ ん。例:y=flag

ターゲット値 (target=)

分類木モデルをデータに適用しターゲット出現率に 関するノード別集計値を計算するために、データに 含まれる y=ターゲット変数のターゲット値を指定 します。回帰木モデルの検証を行う場合は指定して はいけません。

例: target="1"

なお、引用符で囲まなくても構いません。(自動判断 します)

出カモデル形式データ (outmodel=)

モデルを入力データセットに適用したときのノード 別実績件数やその他の集計結果を出力するモデル形 式データセット名を指定します。例:

outmodel=new_model

アンマッチ処理 (unmatch=MISSING)

入力データセットの各オブザベーションをツリーモ デルのノード分岐規則に従って、分岐先ノードを逐 次決定していく過程において、そのオブザベーショ ンの持つ分岐説明変数値がモデルの2つの分岐先ノ ードのいずれにも該当しないとき(これをアンマッ チと呼びます)の対処方法を指定します。一般に、 アンバランスなカテゴリを持つ説明変数が分岐に用 いられたり、ツリー階層が深くなるほど、アンマッ チの発生確率が高くなります。

デフォルト値 欠損(MISSING) の場合は outmodel= データセットにはマッチしたデータのみを用いたノ ード別件数とターゲット件数の集計結果が保存され ます。

その他 件数が多い方(FREQ)/予測値が高い方

(HIGH)/予測値が低い方(LOW)のいずれかを指定可能 です。これらの場合は、アンマッチが発生した場合、 次のように分岐先ノードを決定して終端ノードまで 辿る処理を継続し、予測値を付与します。

FREQはモデル上で該当件数の多い方の分岐先ノー ド,HIGHはモデル上でターゲット出現率や平均値、 処理群と対照群間のターゲット値の差分が高い(大 きい)方の分岐先ノード,LOWは逆にモデル上で低 い(小さい)方の分岐先ノードに強制的に振り分け を行います。

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードで は指定できません。) 例:%dmt_treescore(help)

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例: language=ENGLISH

12.3.4 実行例

例1:分類木モデルをテストデータに適用し、モデ ル形式データセット(検証ツリー)を作成。

%dmt_tree(data=samp_data,y=flg,target=1,x=sei--D M,mincnt=50,maxlvl=10,outmodel=tree1)

%dmt_treescore(model=tree1,data=test_data,y=flg,t arget=1,outmodel=TEST_tree1)

例2:分類木アップリフトモデルをテストデータに 適用し、モデル形式データセット(検証ツリー)を 作成。

%dmt_tree(data=samp_data(where=(DM="1")),contr ol=SAMP_DATA(where=(DM="0")),y=flg,target=1,x= sei--nenshu,mincnt=50,maxlvl=10,outmodel=tree1)

%dmt_treescore(model=tree1 ,data=TEST_DATA(where=(DM="1")) ,control=TEST_DATA(where=(DM="0")) ,y=flg,target=1,outmodel=TEST_tree1)

12.3.5 データセット出力

outmodel=パラメータに指定されたデータセットに テストデータに適用したモデルの各ノードの件数そ の他の統計量を集計したモデル形式データセットが 出力されます。

12.3.6 欠損値の取り扱い

data=,model=, y=, (さらに、必要に応じて、control=, target=)を指定してモデル形式出力データセットを 作成する場合、data=入力データセット(および、 control=データセット)の y=ターゲット変数に含ま れる欠損値は以下のように取り扱われます。

分類木モデルの場合の文字タイプのターゲット変数、 数値タイプのターゲット変数はいずれも有効な値の 1つとみなされます。

回帰木モデルの場合は、ターゲット変数に欠損値を 持つオブザベーションは除外してから処理が行われ ます。

12.3.7 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。

\$_item

さらに、以下のグローバルマクロ変数が作成されま

Data Bring New Insight to Your Business 1 12.3 予測値修正 (dmt_treescore outmodel=)

す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。

e_name e_type lab&i nobs spc&i typ&i zketa _speclen _specnum _errormsg

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.1 予測付与 (dmt_treescore outscore=)

13. 分析画面 ⑥モデル適用

モデルの予測値をデータセットに含まれる全オブザベーションに付与します。

13.1 予測付与(dmt_treescore outscore=)

DMT_TREESCORE データスコア指定	主画面	×
-	データに予測値を付与	入力指定のリセット
入力モデル (*model=) 入力データ (*data=) 出力スコアデータ (outscore=)		······································
予測変数名(pred=)	実施予測変数名(data_pred=)	対照予測変数名(control_pred=)
アンマッチ処理(unmatch=) ア損 〇 件数が多い 	 ○ 予測値が低い方 方 ○ 予測値が高い方 	sort btn
(生成コード)	J	
表示するデータ件数の上限 [ログ]	 ✓ ○ 変数ラベルの表示 ○ 値ラベルの表示 ○ 別々の画面に表示 	実行 予測値 戻る
		~

13.1.1 概要

データに予測値を付与(DMT_TREESCORE)はモデ ルに採用されている説明変数をすべて含む入力デー タセットに対してツリーモデルを適用し、モデルの 予測値を付与したデータセットを出力します

ツリーモデルをデータに適用する場合、予測値が付けられないケースが発生することがあります。(理由は前項の新しいデータを基準にモデル予測値修正を参照)DMT_TREESCOREはこの問題に unmatch=パラメータで対処しています。デフォルトはアンマッチのまま(予測値は欠損)に設定されますが、強制的にノード分岐を行う3通りのオプション(いずれも予測値を算出します)を選択可能です。

13.1.2 指定方法

(コマンド実行モードでの指定)

%dmt_treescore(help,data=,model=, outscore=_treescore, pred=,data_pred=,control_pred=, unmatch=MISSING, language=JAPANESE)

(GUI実行モードでの変更点)

・help は指定不可。

(必須パラメータ)

以下の2個のパラメータは常に必須です。

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.1 予測付与 (dmt_treescore outscore=)

入力データ (data=) … 入力データセット名の指定 入力モデル (model=) … 入力モデルデータセット名の 指定.

(予測値を入力データセットの各オブザベーションにつけ るためのパラメータ)

以下の2個パラメータはdata=入力データセットの各 オブザベーションに予測値を付与する場合に指定し ます。(=の右辺の値はデフォルト値を表しています)

出力スコアデータ (outscore=_treescore) … 予測値を含む出力スコアデータセット名の指

- 定. 予測変数名 (pred=_CONF(または_MEAN,または DIF_CONF,またはDIF_MEAN)) … 予測値を表す変数名の指定.
- アップリフトモデルの場合は、さらに、以下の2個の 予測変数を指定可能です。

<u>処理群の予測変数名 (data_pred=D_CONF</u>,または D_MEAN))

… 処理した場合の予測値を表す変数名の指定. 対照群の予測変数名 (control_pred=C_CONF,または

C_MEAN)) … 対照群に残した場合の予測値を表す変数名の 指定.

(アンマッチ処理のためのパラメータ)

アンマッチ処理 (unmatch=MISSING) … アンマッチデータ(モデルのノード分割変数 カテゴリに該当しないカテゴリを持つオブザベ ーション)への対処方法の選択.

(その他のパラメータ)

以下の2個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

help … 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効) 言語の選択 (language=JAPANESE)

13.1.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

入力データ (data=) 入力データセット名を指定します。このパラメータ は省略できません。例: data=a

出力スコアデータ (outscore=_treescore)

入力データセットの各オブザベーションに対するモ デル予測ターゲット出現率、もしくはモデル予測タ ーゲット値をデータセットに出力します。

予測変数名 (pred=_CONF (または_MEAN,または DIF CONF,またはDIF MEAN))

outscore=出力データセットに加えるモデル予測変数 名を表す変数名を指定します。デフォルトは分類木 モデルの場合は_CONF、回帰木モデルの場合は _MEAN、分類木アップリフトモデルではDIF_CONF、 回帰木アップリフトモデルではDIF_MEANです。

処理群の予測変数名 (data_pred=D_CONF,または D_MEAN))

分類木アップリフトモデル、または回帰木アップリ フトモデルの場合に、そのオブザベーションを処理 群に設定した場合の予測値を表す変数名を指定しま す。

対照群の予測変数名 (control_pred=C_CONF,または C_MEAN))

分類木アップリフトモデル、または回帰木アップリ フトモデルの場合に、そのオブザベーションを対照 群に設定した場合の予測値を表す変数名を指定しま す。

アンマッチ処理(unmatch=MISSING)

入力データセットの各オブザベーションにおいて、 分岐説明変数値がモデルの2つの分岐先ノードのい ずれにも該当しないとき(これをアンマッチと呼び ます)の対処方法を指定します。

デフォルト値 欠損(MISSING) は outscore= データ セットの予測値 (pred=パラメータに指定した変数の 値) に欠損値を与え、自動変数_NODEにはマッチし た最後のノード名を与えます。

その他 件数が多い方(FREQ)/予測値が高い方

(HIGH)/予測値が低い方(LOW)のいずれかを指定可 能です。これらの場合は、アンマッチが発生した場 合、次のように分岐先ノードを決定して終端ノード まで辿る処理を継続し、予測値を付与します。

FREQはモデル上で該当件数の多い方の分岐先ノード, HIGHはモデル上でターゲット出現率が高い方の分岐先ノード, LOWは低い方の分岐先ノードに強制的に振り分けを行います。

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードで は指定できません。) 例:%dmt_treescore(help)

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.1 予測付与 (dmt_treescore outscore=)

す。

例:language=ENGLISH

13.1.4 実行例

例1:分類木モデルの予測値をデータにつける

%dmt_tree(data=samp_data,y=flg,target=1,x=sei--D M,mincnt=50,maxlvl=10,outmodel=tree1)

%dmt_treescore(model=tree1,data=test_data, outscore=test_score1)

	nenshu	DM	fig	kingaku	_NODE	_TERM	_UNMATCH	_CONF
	V	V	V	X	V	V	V	Y
1	376	実施	なし	0	_N010	YES	NO	0
2		実施	なし	0	_N11110	YES	NO	0.4657534247
3	913	実施	なし	0	_N01111	YES	NO	0.243902439
4		実施	あり	100	_N11111	YES	NO	0.8493150685
5	305	実施	なし	0	_N1000	YES	NO	0.0416666667
6		実施	なし	0	_N1010	YES	NO	0
7		実施	なし	0	_N01111	YES	NO	0.243902439
8	327	実施	なし	0	_N0110	YES	NO	0.0615384615
9	346	実施	なし	0	_N1011	YES	NO	0.0625
10	713	実施	なし	0	_N11110	YES	NO	0.4657534247
11		実施	なし	0	_N01111	YES	NO	0.243902439
	0.24	-that	41			100	110	0.040000400

変数 _NODE, _TERM, _UNMATCH および予測変数 名(ここではpred=パラメータ無指定なので _CONF) が追加されます。

例2:分類木アップリフトモデルの処理群の場合の 予測値と対照群の場合の予測値をデータにつける

%dmt_tree(data=samp_data(where=(DM="1")),contr ol=SAMP_DATA(where=(DM="0")),y=flg,target=1,x= sei--nenshu,mincnt=50,maxlvl=10,outmodel=uplift_tr ee1)

%dmt_treescore(model=uplift_tree1 ,data=TEST_DATA,outscore=test_score2)

	A	X	V	V	X	V	V	8
1	なし	0	_N110	YES	NO	0.0535947712	0.0980392157	0.044444444
2	なし	0	_N0001	YES	NO	-0.008588186	0.1688311688	0.1774193548
3	なし	0	_N110	YES	NO	0.0535947712	0.0980392157	0.044444444
4	あり	100	_N111	YES	NO	0.6718027735	0.9090909091	0.2372881356
5	なし	0	_N0001	YES	NO	-0.008588186	0.1688311688	0.1774193548
6	なし	0	_N110	YES	NO	0.0535947712	0.0980392157	0.044444444
7	なし	0	_N010	YES	NO	0.09462486	0.1052631579	0.0106382979
8	なし	0	_N100	YES	NO	-0.180371073	0.0483870968	0.2287581699
9	なし	0	_N101	YES	NO	0.1162687887	0.3461538462	0.2298850575
10	なし	0	_N0001	YES	NO	-0.008588186	0.1688311688	0.1774193548
11	なし	0	_N010	YES	NO	0.09462486	0.1052631579	0.0106382979
12	なし	0	_N111	YES	NO	0.6718027735	0.9090909091	0.2372881356

NODE TERM UNMATCH DIF CONF D CONF C CONF

変数 _NODE, _TERM, _UNMATCH および予測変数 名 (ここではpred=,data_pred=,control_pred=パラメ ータがすべて無指定なので それぞれ、DIF_CONF, D_CONF, C_CONF) が追加されます。

13.1.5 データセット出力

出力スコアデータ(outscore=)データセット data=入力データセットの各オブザベーションに対 して、model=入力モデルを適用し、以下の4変数(ア ップリフトモデルでは6変数)を追加したデータセッ トを出力します。

_NODE, _TERM, _UNMATCH, &pred

ただし、&predは 予測変数名(pred=)に指定した名前 です。

outscore=出力データセットに追加される変数							
タイプ	長さ	内容	備考				
文字	可変	所属ノード名	unmatch=MISSING 指定かつ _UNMATCH="YES"の場合は最後にマッチ した中間ノード名が入る。それ以外の場合 は辿りついた終端ノード名が入る				
文字	3	終端ノード識別変数	unmatch=MISSING 指定かつ _UNMATCH="YES"の場合"NO"となる。そ れ以外は"YES"が入る				
文字	3	unmatch=パラメータ指定の如何に関わら ず、アンマッチが発生した場合は常に "YES"が入る。それ以外は"NO"					
数値	8	予測ターゲット出現率	unmatch=MISSING 指定かつ _UNMATCH="YES"の場合欠損値となる				
	<u>カデープ</u> タイプ 文字 文字 文字 文字 文字 文字 数値	<u>カデータセット タイプ 長さ</u> 文字 可変 文字 3 文字 3 数値 8	カデータセットに追加される変数 タイプ 長さ 内容 文字 可変 所属ノード名 文字 3 終端ノード識別変数 文字 3 どこかでアンマッチが発生したかどうかの 数値 8 予測ターゲット出現率				

アップリフトモデルでは、加えて、data_pred=パラ メータに指定した変数名(指定が無ければ、D_CONF またはD_MEAN)、control_pred=パラメータに指定し た変数(指定が無ければ、C_CONFまたはC_MEAN) が出力されます。

13.1.6 欠損値の取り扱い

data=入力データセットに含まれる数値タイプの説 明変数に特殊欠損値(._,.A~.Z)が存在した場合は通常 欠損値(.)に変換された上で使用されます。

文字タイプのターゲット変数、説明変数はいずれも 有効な値の1つとみなされます。

13.1.7 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。

e_name e_type lab&i nobs spc&i typ&i zketa _speclen _specnum _errormsg

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.2 コード保存 (dmt_treescore outcode=)

13.2 コード保存(dmt_treescore outcode=)

DMT_TREESCORE 指定画面(OUTCODEのみ)	X
スコアコード保存	入力指定のリセット
入力モデル (*model=) … 表示 予測変数名(*pred=) 実施予測変数名(*data_pred=) 出力スコアコード(*outcode=)	対照予測変数名(*control_pred=)
アンマッチ処理(unmatch=) ・ ・ ・	
[ログ] 🗌 別々の画面に表示	実行 スコアコード 戻る
	^
	~

13.2.1 概要

予測値付与SAS⊐ード(DMT_TREESCORE)は予測 値を付与するためのSASプログラムコードを外部フ ァイルに出力します。

13.2.2 指定方法

(コマンド実行モードでの指定)

%dmt_treescore(help,model=,

outcode=_score_sas_code, pred=,data_pred=,control_pred= unmatch=MISSING, language=JAPANESE)

(GUI実行モードでの変更点)

・help は指定不可。

(必須パラメータ)

以下の1個のパラメータは省略できません。

入力モデル (model=) … 入力モデルデータセット名の 指定.

(予測値付与SASコードを出力するためのパラメータ)

以下の2個もしくは3個のパラメータはdata=入力デ ータセットの各オブザベーションに予測値を付与す る場合に必須指定です。(=の右辺の値はデフォルト 値を表しています)

出力スコアコード (outcode=_score_sas_code) … 予測値を付与するSASコードを書き出す外 部ファイル名の指定.

予測変数名 (pred=_CONF(または_MEAN,または DIF_CONF,またはDIF_MEAN))

... 予測値を表す変数名の指定.

処理群の予測変数名 (data_pred=D_CONF,または D_MEAN))

... 処理した場合の予測値を表す変数名の指定.

- 対照群の予測変数名 (control_pred=C_CONF,または C_MEAN)) … 対照群に残した場合の予測値を表す変数名の
 - 指定.

(アンマッチ処理のためのパラメータ)

アンマッチ処理 (unmatch=MISSING) … アンマッチデータ(モデルのノード分割変数 カテゴリに該当しないカテゴリを持つオブザベ

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.2 コード保存 (dmt_treescore outcode=)

ーション)への対処方法の選択.

(その他のパラメータ)

以下の2個のパラメータは任意指定です。(=の右辺の 値はデフォルト値を表しています)

help … 指定方法のヘルプメッセージの表示.(コマン ド実行モードでのみ有効) 言語の選択 (language=JAPANESE)

13.2.3 パラメータの詳細

入力モデル (model=) 入力モデルデータセット名を指定します。このパラ メータは省略できません。 例:model=bunseki1

出力スコアコード (outcode=_score_sas_code) 入力データセットの各オブザベーションに予測値を 付与するためのSASプログラムコードを外部ファイ

ルに出力します。デフォルトはSASではSAS起動用シ ョートカットに定義された作業フォルダー、WPSでは 現行のWPSワークスペースの下に _score_sas_code という名前のファイルに保存されます。保存先ファ イル名の物理パスを省略なしで指定する場合も含め て、outcode=c:¥temp¥saspgm1.sas というように常 に引用符なしで指定します。

アンマッチ処理 (unmatch=MISSING)

出力スコアコードを用いてデータに予測値を付与す る過程において、分岐説明変数値がモデルの2つの分 岐先ノードのいずれにも該当しないとき(これをア ンマッチと呼びます)の対処方法を指定します。

デフォルト値 欠損(MISSING) は予測値(pred=パラ メータに指定した変数の値)に欠損値を与え、自動 変数_NODEにはマッチした最後のノード名を与えま す。

その他 件数が多い方(FREQ)/予測値が高い方 (HIGH)/予測値が低い方(LOW) のいずれかを指定可 能です。 これらの場合は、アンマッチが発生した場 合、次のように分岐先ノードを決定して終端ノード まで辿る処理を継続し、予測値を付与します。

FREQはモデル上で該当件数の多い方の分岐先ノード, HIGHはモデル上でターゲット出現率が高い方の分岐先ノード, LOWは低い方の分岐先ノードに強制的に振り分けを行います。

help

パラメータ指定方法をログ画面に表示します。この オプションは単独で用います。(GUI 実行モードで は指定できません。) 例:%dmt_treescore(help)

言語 (language=JAPANESE)

分析実行中のメッセージ出力、結果の表のタイトル、 表項目などの表示言語を選択します。ただし、現バ ージョンでは、日本語か英語の2種類のみ選択可能で す。

例:language=ENGLISH

13.2.4 出力 SAS コードの使用方法

出力した**SAS**コードファイルを用いると、入力デー タセットに対して、以下の**SAS**ステートメントを用 いて予測値をつけることができます。

data pred_data;

set input_data; %inc "_score_sas_code"; run:

ただし、以下の点に注意して用いてください。

 input_data にはモデルに採用されたすべての説明変数を含み、かつ、以下の4個の 変数が存在しないこと。

_NODE,_TERM,_UNMATCH,&pred(&predはpred= パラメータで指定した名前(デフォルトはモデルによ って異なる。_CONFまたは_MEANまたはDIF_CONF またはDIF_MEAN)

これら4個の変数は%incステートメントで呼び出す コードの中の冒頭において、LENGTHステートメン トで変数の型と長さを宣言しています。そのため、 input_data にこれらの変数が存在していると %inc ステートメントの指定が無効になり、エラーが発生 します。エラーが発生する場合は、これらの変数を input_data から削除(drop)した後、用いてくださ い。

(2) %incステートメントとrunステートメント の間には何も書かないこと。

出力されるSASプログラムコードには returnステー トメントが存在しますので、%incステートメントの 後に追加処理を行うプログラムステートメントを付 加しても実行されません。別のDATAステップで追加 処理を行うようプログラミングしてください。

data pred_data; set input_data; %inc "_score_sas_code "; other statements ... /* 実行されない */ run; data pred_data; %inc "_score_sas_code "; run; data pred_data2; set pred_data; other statements ... /* 実行される */ run;-

Data Bring New Insight to Your Business 13 分析画面 ⑥モデル適用 13.2 コード保存 (dmt_treescore outcode=)

13.2.5 実行例

例:%dmt_tree(data=samp_data,y=flg,target=1,x=se i--DM,mincnt=50,maxlvl=2,outmodel=tree1)

%dmt_treescore(model=tree1,outcode="C:¥temp¥sc ore_pgm1.sas")

データにモデル予測値をつけるためのSASプログラ ムコードをテキストファイルに出力します。

OUTCODE=ファイルの例

score_pginaisos >-cis
2mfly(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)
<pre>// control contro</pre>
Length NUDE \$4 TEEM \$3 DEMATCH \$3 CONF 8:
[004][174][00][1740][00][1740][00][00][00][00][00][00][00][00][00][
Class if (FWT0) in (""""""""""""""""""""""""""""""""""""
eternet: DMALICE: 1°TS1:
enda : refaren 1
80:
if DM in (°C) them do: MODE=MOO':TEBM='YES':_CONF=0.0128388017: end:
eine (f DM, Li (']_') them do: MODE=_NON':_TERME'YES':_ONNF=0.1205211728: equi
00001719='9ES': 0012-'00';TE2M='NO ':ONF=.; return:
end; naturn "
7 95 41710
If GARUEEXI in (, 3 4) then do: MODE= _NIO':_TEEW= YES':_CONF=0.1853831824:
une (f GATHEEXI in ('5', '2', '1') then do: MUENIT:_TEM= YES':_ONF=0.552222006:
eline do: DMARCH28 ("TES":
neturn) Letan WORE'/
INVEL JOANS Y CONSTRUCTION AND ADDRESS AND ADDRESS

13.2.6 コマンド実行モードでの注意

実行中にWORKライブラリに _tmp_ で始まる一時 データセットがいくつか生成され、実行終了後にす べて削除されます。

また、以下のユーザ定義フォーマットがWORKライ ブラリに作成されます。これらは実行後も削除され ません。同じ名前のユーザ定義フォーマットは上書 きされますので注意してください。

\$_item

さらに、以下のグローバルマクロ変数が作成されま す。これらは実行後も削除されません。同じ名前の グローバルマクロ変数は上書きされますので注意し てください。

e_name e_type lab&i nobs spc&i typ&i zketa _speclen _specnum _errormsg

13.3 コード管理

כבג	7コードの管理		×
		スコ	コアコードの管理
	名前	作成日時	۶t
	_score_sas_code	2016/08/13 11:40	[TREESCORE] %dmt_treescore(data=_item3,model=model_tree.pred=_CONF,outcode=C3
			< >>
	0-%	表示	名前の変更削除戻る

Data Bring New Insight to Your Business 1 13.3 コード管理

13.3.1 概要

「スコアコード保存」画面で作成したツリーモデル予 測値付与プログラムコードファイルを操作(表 示・名前の変更・削除)します。 この機能はマクロモジュールには含まれていませ ん。GUI実行モードでのみ指定可能です。

メモ欄の最初の鍵カッコは以下の画面で作成され たことを表します。

[TREESCORE] ... スコアコード保存

続いてデータを作成したときに実行したプログラ ムが記述されています。

13.3.2 操作方法

名前	
作成日時	,
	۶K

リストの上にあるバーをクリックすると、データ セットリストを各項目の昇順・または降順で並べ 替えることができます。

操作したいコードファイル名をクリックすると、 操作ボタンが表示されますので、表示・名前の変 更・削除の操作を行います。

確認	
_score_sas_code を表示しますか?	
(はい(Y) いいえ(N)	

名前の変更 データの名前とメモ内容を確認・変更します。

名前は半角英数字で22文字以内(TEST_の接頭辞や_CV10などの接尾辞が自動的に付けられる可能性があるため)に設定してください。(先頭はアルファベットまたは_(アンダーバー))

削除 データを	削除します。
確調	2
保存スコアコード_score_sas_	_code を削除してようしいですか?
	はい(Y) いいえ(N)

削除すると、元に戻せません。

(TIPS) 多数のファイルを関連ファイルと一緒にま とめて削除したい場合は、「設定画面」の「分析ディ レクトリ」の下の「スコアコードディレクトリ」「表示」 ボタ ンを押し、起動するWindowsエクスプローラで行 うと便利です。削除したいデータセット名が書か れたディレクトリをすべて同時選択してから削除 します。

Data Bring New Insight to Your Business 14 エラーへの対処方法など 13.3 コード管理

14. エラーへの対処方法など

14.1.1 SAS 言語マクロプロセサからのエラーメッセ ージ(コマンド実行モード)

マクロパラメータの入力間違い等によるエラーは SASマクロプロセッサーからエラーメッセージが 出されます。

%dmt_trea(data=samp,y=income,target=>50K,mincnt=200,maxl vl=5,x=_all_,dropx=fnlwgt,outmodel=samp_model)

3710 %dmt_trea(data=samp,y=income,target=>50K,mincnt= 200,maxlvl=5,x=_all_,dropx=fnlwgt,outmod

180

3710 !el=samp_model) ERROR 180-322: ステートメントが無効か、または順序が正しく ありません。

%*dmt_tree*(tata=samp,y=income,target=>50K,mincnt=200,maxl vl=5,x=_all_,dropx=fnlwgt,outmodel=samp_model)

ERROR: キーワードパラメータ TATA はマクロ定義されてい ません

このエラーに対しては、エラー内容を確認し、入 カパラメータを訂正して再実行します。

14.1.2 DMT_TREE アプリケーションからのエラーメ ッセージ(コマンド実行モード)

DMT_TREEアプリケーションは指定できるパラメ ータ値をチェックし、不適切な値が入力された場 合は、エラーメッセージを出して処理を中断しま す。

%*dmt_tree*(data=samp1,y=income,target=>50K,mincnt=200,ma xlvl=5,x=_all_,dropx=fnlwgt,outmodel=samp_model)

エラー: 指定した入力データセット samp1 が見つかりません.

%dmt_tree(data=samp,y=income,target=>50K,mincnt=200,maxl vl=5,x=_all_,dropx=flnwgt,outmodel=samp_model)

エラー: パラメータ DROPX=flnwgt に問題があります. FLNWGT が データセット samp の中に見つかりません.

これに対しても、エラー内容を確認し、入力パラ メータを訂正して再実行します。

14.1.3 強制終了後の処置(コマンド実行モード)

dmt_treeやdmt_crossの実行中にユーザーがSAS

やWPSの処理を強制的に中断した場合は、 NONOTESオプションが有効になっている可能性 が高く、また、いくつかのデータセットがオープ ンされたまま残っている可能性もあります。以下 のステートメントを最初に入力してください。

options notes; %dmt release dsid()

その後、セッションが有効かどうかを確認します。 確認するには、以下のような簡単なSASプログラ ムを入力し実行するのが良いでしょう。

data a;a=1;run;

データセットaが作成されたとの通常のメッセー ジがログに出れば続けて別の処理を行うことがで きます。

もしも**SAS**ログに通常のメッセージもエラーメッ セージも返ってこない場合は、以下の「おまじな い」を入力します。

;*';*";*/;quit;run;

この入力に対して何らかのエラーメッセージが出 れば、メッセージを良く読んでから、通常のメッ セージが出るようになるまで、簡単なプログラム を入力したりしてセッションの回復状態にします。 万一、セッションがどうしても通常状態に戻らな い場合は、保存可能なファイルなどを保存した上 で、一旦SASまたはWPSを終了し、新たにSASま たはWPSセッションを開始してください。

14.1.4 ライブラリの割り当てを解除する方法(コマン ド実行モード)

コンパイル済みマクロカタログライブラリは、 DMT_TREEV1.3_SAMPLERUN.sas を実行する と、プログラムの冒頭にある、以下の指定により、 mstore というライブラリ名で割当てられた状態 にあります。

libname mstore "%sysfunc(pathname(sasuser))"; options mstored sasmstore=mstore;

mstoreライブラリに存在するマクロを呼び出した 後、以下のように通常の方法によりmstoreライブ ラリの解除を試みても、エラーとなり解除できま せん。

libname mstore;

ERROR: ライブラリ MSTORE は使用中のため、 クリアまたは再割り当てはできません。

Data Bring New Insight to Your Business 14 エラーへの対処方法など 13.3 コード管理

ERROR: LIBNAME ステートメントのエラーです。

これはマクロカタログライブラリが、割り当てら れると占有モードでオープンされる特殊なライブ ラリであるためです。解除の必要がある場合は、 以下のように行います。

最初の3行(コメントを無視して)を実行すると、 それぞれエラーが発生しますが無視します。4行目 を実行したとき、以下のようにmstoreライブラリ の割り当てが取り消された旨のメッセージが現れ ると成功です。

NOTE: ライブラリ参照名 MSTORE の割り当てを取り消しました。

14.1.5 Microsoft .NET Framework からの エラ ーメッセージ(GUI 実行モード)

上記のようなエラーは.NET Frameworkからのエ ラーメッセージです。エラー内容を確認(通常は ファイルが期待された場所に存在しないなどの内 容です。)して、一旦終了してから、対応可能であ れば対応した後、もう一度GUI実行アプリケーショ ンを起動します。

対応方法が不明の場合は、以下を試してください。

・Windowsのログオフやシャットダウンを行った 後GUI画面を再起動する。

・設定画面で新しい分析ルートディレクトリを作 成しする。

・データ抽出から順に、分析処理を再実行する。

それでも解決しない場合は、エラー出現箇所とエ ラー内容をメモしておいて開発元に問合せしてく ださい。

なお、SASで設定した分析ディレクトリをWPSで 使用(またはその逆の使用)を行うと、分析ディ レクトリ内にファイルタイプが異なるデータセッ トが混在してしまい、上記のようなエラーが出現 する場合がありますので、共用しないでください。 (※ これを防止するよう設定画面で警告を出す ようにしていますが、設定そのものは可能になっ ています。)

14.1.6 GUI 実行メニューを 2 つ同時に起動できない というエラー(GUI 実行モード)

GUI画面を1つ起動中にもう1つ起動しようとす ると、以下のエラーが現れます。

このエラーメッセージはアプリケーションの複数 同時起動を避ける目的でGUI実行アプリケーショ ンが表示しています。しかし、GUI実行アプリケーショ ンが異常終了後に、再度アプリケーションを 立ち上げようとした場合、プロセスが残っている ために、このエラーメッセージが出現する場合も あります。この場合は、以下のメッセージに「は い」と答えて(DMTデシジョンツリーV1.3.exeの プロセスをすべて終了させます)から再立ち上げ を行ってください。(もしも、それでもプロセスが 終了しない場合は、一旦ログオフを行ってプロセ スを終了させるか、Windowsのタスクマネージャ を起動し(Ctrlキー+Altキー+Deleteキー同時押 し)、プロセスタブを開いて、DMTデシジョンツリ ーV1.3.exe を終了させてください。)

本アプリケーションからプロセスの終了を指定 (「はい」を選択します)

14.1.7 突然 GUI 画面が終了する場合(GUI 実行モ ード)

WindowsやセキュリティソフトがDMTデシジョン ツリーV1.3.exeを有害なソフトウェアと判断して、 実行を強制的に停止するため、何かボタンを押す と突然画面が消えてしまう場合があります。この ような場合は、実行を許可する設定を行ってくだ さい。(通常は許可するかどうかを質問するメニュ ー画面がポップアップします)

14.1.8 画面から入力データ、クロス分析結果、作成 したモデルを選択するボタンで選択画面が開かなく なった場合(GUI 実行モード)

GUI画面実行メニューでは、入力したデータの変数 名や型などの情報、作成したモデルの目的変数名 や型、採用された説明変数名や型、モデル生成手 法などの情報を分析ディレクトリの下の該当する サブディレクトリ内に個別に保存しています。

何等かの理由で、情報の一部が欠けて出力された データやモデルのディレクトリがサブディレクト リ内に含まれている場合、そのサブディレクトリ のメンバーリストを作成する選択画面が開かなく なります。

このような場合は、設定画面の分析ディレクトリ の下の該当するサブディレクトリを開いて、内容 を確認してください。

ディレクトリは存在するが必要なファイルが含ま れていない等の問題が見つかれば、そのディレク トリは不完全ですので、削除するか再作成して完 全なものにしてください。

サブディレクトリ内の全情報が完全であれば選択 画面は開くはずです。

15. 付録

15.1 用語の説明

本アプリケーションで用いている主要な用語を説 明します。

15.1.1 データ、データセット、変数、オブザベーション モデルを作成したり、モデルによる予測値をあて はめたりする1まとまりのデータのことをデータ セットと呼びます。元来、データは単一の値を意 味し、データセットは複数のデータを組織的に集 めた単一のファイルを意味するものと考えられま す。しかしながら、データセットという呼称が長 いこともあり、また使う場面でデータとデータセ ットを区別できることが多いため、データセット をデータと呼ぶ場合も多くあります。本アプリケ ーションでもデータセットとデータを区別しない で呼ぶことがあります。

また、データの集合を集合の仕方によって変数(カ ラム、列または項目)、オブザベーション(インス タンス、行)、データセットと呼びます。変数は同 じ属性(たとえば、年齢や性別)を表すデータを 集めたものであり、オブザベーションは1つの個 体(たとえば、Aさん)について複数の変数(年齢、 性別、所属など)を集めたものです。

15.1.2 数値タイプ、文字タイプ

変数の持つ特性(プロパティ)の1つ。数値タイ プは足し算などの四則演算ができるタイプ、文字 タイプはできないタイプのこと。本アプリケーシ ョンでは、その変数が含まれる SAS または WPS データセットに定義された変数タイプによって分 析変数(ターゲット変数、説明変数)のタイプが 決定されます。

15.1.3 ターゲット変数、ターゲット

本アプリケーションでは、モデルの目的変数をタ ーゲット変数と呼び、ターゲット変数の値の中で 出現率を予測したい値をターゲットと呼びます。 なお、数値タイプターゲット変数の場合は、ある 値をしきい値とした上下範囲をターゲットとする ことができます。

15.1.4 説明変数

ターゲット出現率の予測に役立つと本アプリケー ションのユーザが考え、モデル作成時に指定する 変数のことを候補説明変数、または単に説明変数 と呼びます。実際にモデルに採用された説明変数 のみを指す場合もあります。

15.1.5 モデル、ツリーモデル、ツリー

モデルとは現実の世界の一部を模した仕組みやシ ステムのこと。ここで扱うモデルは統計モデルの 1つで、予測モデルと呼ばれます。これは、(目的 変数) = (説明変数の関数) + (誤差)の形式で 表現され、目的変数の変動を説明変数の値だけを 用いてできるだけ近似しようとするモデルです。 (説明変数の関数)部分はモデルの種類によって さまざまな形がありますが、ツリーモデルでは、 説明変数の値によって逐次的に分岐するノードの 集合形式となっています。ツリーモデルのことを 単にツリーと呼ぶこともあります。

15.1.6 ノード、親ノード、子ノード、ルートノード、中間 ノード、終端ノード

ツリーモデルの用語。ツリーモデルは全体が木構 造の形をしており、節点(ノード)と節点間を結 ぶ有向結線(アローまたはリンク)の2つの要素 の組合せで表現されます。出発点のノードは特に ルートノード(根ノード)と呼び、下位のノード に向かう結線(出力結線)のみを持ちます。中間 ノードは 1 つの入力結線と複数の出力結線を持つ ノードのことです。そして終端ノード(ターミナ ルノード)は1つの入力結線のみを持ち、他のノ ードに向かう出力結線を持たないノードを指しま す。また、親ノード、子ノードは、相対的なノー ドの位置関係を表す呼称です。たとえば、ノード A からノードBとノードCが直接分岐しているとす れば、ノードAはノードB、ノードCに対する親 ノードですが、逆にノード B とノード C はいずれ もノードAの子ノードです。しかし、ノードBに 別の子ノードDが存在すれば、ノードBはノード Dに対する親ノードでもあります。

15.1.7 枝、枝刈り、枝接ぎ

ツリーモデルにおける枝(Branch)とは、特定の 中間ノードとその中間ノードにつながっている下 位ノードをすべて含む部分木を意味します。枝刈 り(Pruning)とはツリーモデルから、部分木を取 り除き、ツリーを簡素化する操作のことを意味し ます。逆に、枝接ぎとは、特定の終端ノードに別 のツリーモデルを枝として接ぎ足し、より豊富な 枝を持つツリーにする操作のことを意味します。 なお、本アプリケーションでは英単語の長さの関 係から枝のことをトウィグ(Twig=小枝)と呼んで います。また枝刈りをプルーン(Prune)ではなく カット(Cut)、枝接ぎをアッド(Add)と呼んでい ます。

15.1.8 AIC 値

AIC (Akaike's Information Criterion=赤池の情報量 基準) は広く用いられている統計モデル選択基準 の 1 つ。本アプリケーションでは親ノードの分岐 に採用する説明変数の優先選択順位を AIC の値に よって決定しています。

なお、AIC 値の計算式については、下記の文献の第 6 章分割表解析モデル(P.92~P.106)と第 9 章分 散分析モデル(P.155~P.170)を参照してくださ い。

情報量統計学(1983)坂元・石黒・北川 共立出版

なお、DMT_CROSS で表示している AIC の値は以 下のように、関連があるとした場合 (AIC(モデル)) と関連が全く無いとした場合 (AIC(0))の差をとっ た値を計算して表示してます。

AIC=AIC(モデル)-AIC(0)

(分割表モデルの場合)

AIC(モデル)= (-2)*(cell-n*log(n))+2*(cat_n*2-1) AIC(0)= (-2)*(marginal-2*n*log(n))+2*(cat_n+2-2) ただし、cell はすべての分割表のセルについて Σ{セ ル件数*log(セル件数)}をとった値、n はデータ件数、 cat_n は説明変数のカテゴリ数、marginal はすべて の周辺度数について Σ{周辺度数件数*log(周辺度数 件数)}をとった値を表します。

この計算式は、説明変数とターゲットの出現有無 との関連性を測定する AIC 値と、処理群と対照群 間のカテゴリ別の出現率の差の有意性を測定する 個別 AIC 値の計算に用いています。

(分散分析モデルの場合) AIC(モデル)= n*log(2*3.1415)+n*log(ESS)+n+2*(DF-1+2) AIC(0)= n*log(2*3.1415)+n*log(WSS0)+n+4

ただし、n はデータ件数、ESS は分散分析モデル における誤差平方和、DF はモデルの自由度、WSSO は全体の修正済平方和、log()は自然対数関数を表 します。なお、ESS=0 の場合 AIC= -1E308 として います。

この計算式は、説明変数とターゲット変数との関 連性を表す AIC 値と、処理群と対照群間のカテゴ リ別の平均値の差の有意性を測定する個別 AIC 値 の計算に用いています。

15.1.9 エントロピー

エントロピーはターゲットオブザベーションと非 ターゲットオブザベーションの混在度合いを表す 量です。ノード内でターゲットと非ターゲットが 同じ割合で混ざっているとき最大値をとり、ター ゲット出現率が0か1、つまりターゲットと非ター ゲットいずれか一方のみが存在するときに最小値 をとります。1つの親ノードに一緒に含まれている ときから2つの子ノードに分かれた後のエントロ ピーは、2つの子ノードのエントロピー値の件数の 重み付き平均値として計算されます。本アプリケ ーションでは分岐後の2つの子ノードの重み付き 平均エントロピーが最小となるように分岐に用い る説明変数のカテゴリ値を2つの子ノードへ振り 分けています。

エントロピー計算式は、以下のとおり。

Entropy=-p*log2(p)-(1-p)*log2(1-p)

ただし、pはターゲット出現率、log2()は2を底と する対数関数、*は乗算演算子を表します。 pの値は0から1の範囲ですので、上式からエント ロピーの値も0から1の範囲をとることがわかり ます。(p=0または1のときエントロピーは0、p=0.5 のときエントロピーは1になります。)

たとえば、親ノードが N=100,p=0.1 とすると、この親ノードのターゲットと非ターゲットの混ざり 具合に関するエントロピーは、以下のように求ま ります。

Entropy(親)=-0.1*log2(0.1)-0.9*log2(0.9)=0.33219

Data Bring New Insight to Your Business 15 付録 15.1 用語の説明

+0.13680=0.46899

この親ノードに含まれるオブザベーションを 2 つ の子ノード(N1=40,p1=0.175 と N2=60,p2=0.05) に分けたとすれば、分岐後のエントロピーは、以 下のように計算します。

0.00719=0.22329

Entropy(分 岐 後)=(N1* Entropy(子 1)+N2* Entropy(子 2))/(N1+N2) =(40*0.66902+60*0.22329)/100 =0.40158

元の親ノードのエントロピーは0.46899でしたが、 2 つの子ノードに分かれた後のエントロピーは 0.40158と小さくなっています。このように、2つ の子ノードに分かれた後のエントロピーは、分か れる前のエントロピーと比較して、常に等しいか 減少します。(p1=p2=p の場合のみ等しくなりま す。)減少量が大きいほど、件数の重みを考慮した ターゲットの出現率の差異が2つの子ノード間で 大きいことを意味します。

15.1.10 分割レベル、最大分割レベル

分割レベルとは、各ノードのルートノードからの 分岐回数を表します。1回の分岐ごとに説明変数値 によって分析データを1回分割して2つの子ノー ドを生成するためこのように呼んでいます。最大 分割レベルはツリーモデルの生成終了条件の1つ。 この条件に達したノードは終端ノードになります。

15.1.11 ノード件数、最小ノード件数

各ノードに含まれるオブザベーション件数のこと をノード件数と呼びます。最小ノード件数はツリ ーモデルの生成終了条件の1つ。最小ノード件数 を満たす2つの子ノードを生成できない親ノード は終端ノードになります。

15.1.12 観測比率の標準誤差

データから観測されたターゲット出現率から母集

団における真のターゲット出現率との誤差を推計 する統計量の1つです。データ件数の平方根に反 比例します。たとえば、同じターゲット出現率が 観測された2つのノード(100件のノード件数を 持つノードAと400件のノード件数を持つノード B)を比較すると、ノードBはノードAの4倍の データ件数を持つため、観測されたターゲット出 現率の真のターゲット出現率との誤差はノードA の半分とみなせます。

計算式は、以下のとおり。

観測比率の標準誤差=SQRT((p*(1-p))/N)

ただし、p はターゲット出現率、N はデータ件数、 SQRT()は平方根をとる関数を表します。

15.1.13 2つの観測比率の差の標準誤差

独立した2つの集団 1、集団 2 の観測比率を p1=t1/N1, p2=t2/N2 (ただし、N1,N2 は各集団の総 件数、t1,t2 は各集団のターゲット件数とします)。
集団 1 と集団 2 を併合した集団の観測比率を p=(t1+t2)/(N1+N2) とすると、p1-p2の標準誤差 は、 下記に式により計算されます。

2つの観測比率の差の標準誤差 =SQRT(p(1-p)(1/N1+1/N2))

15.1.14 2つの観測平均値の差の標準誤差

独立した2つの集団 1、集団2のそれぞれの件数を N1,N2、観測平均値を m1,m2、観測標準偏差を std1,std2とすると、m1-m2の標準誤差は、下記に 式により計算されます。

2 つの観測平均値の差の標準誤差 =SQRT(((N1-1)*std1^2+(N2-1)*std2^2)/(N1+N2-2) *(1/N1+1/N2))

本アプリケーションでは、上式で N1-1、N2-1 を それぞれ N1、N2 に置き換えて得られる、以下の 式を用いています。

2つの観測平均値の差の標準誤差 =SQRT(std1^2+std2^2) 15.1.15 スタージェスの公式

数値タイプ変数の分布図(ヒストグラム)を作成 する場合に推奨されている階級数の計算式。本ア プリケーションでは、数値タイプ説明変数のカテ ゴライズを行うアルゴリズムの中で用いています。

階級数=1+log2(N)

ただし、Nはデータ件数、log2()は2を底とする対 数関数、本アプリケーションでは CEIL()関数を用 いて計算結果を切り下げて整数化しています。

たとえば、N=100 の場合、スタージェスの公式に よる階級数は、

CEIL(1+log2(100))=CEIL(7.6438...)=8

となります。

なお、本来スタージェスの公式により得られた階 級数は、その数値タイプ変数の分布範囲(最大値 -最小値)を等間隔に区切り、その区切った範囲 に含まれるオブザベーション件数をヒストグラム 表示するために用いられます。しかし、本アプリ ケーションでは、各階級に含まれるオブザベーシ ョンが等しくなるような階級のしきい値を求める 目的で用いています。

15.1.16 サンプリング、層別サンプリング

一般に、実際の分析対象を選択する際に対象母集 団件数が非常に大きい、または既に得られている 分析対象データセットの件数が十分大きい場合、 その中からランダムに分析対象データを部分抽出 することをサンプリング(標本抽出)といいます。 サンプリング件数の元の全体件数に対する割合を 抽出率と呼び、10%サンプリングを行うといった 言い方をします。また、特定の単一カテゴリカル 変数の値別または複数カテゴリカル変数の値の組 合せ別にサンプリングを行うことを層別サンプリ ングと呼び、層別サンプリングで無いサンプリン グを単純サンプリングと呼びます。たとえば、1000 人の顧客全体から 10% サンプリングを行うと 100 人の顧客が抽出されるが、単純サンプリングの場 合は、その中の男女比率は元の顧客全体の男女比 率が維持されるとは限りません。一方、性別に10% 層別サンプリングを行うと、男女別にそれぞれ 10%サンプリングを行った結果を結合するため、

得られたサンプリングデータにおける男女比率は 元のデータセットにおける男女比率に一致します。 (ただし、抽出率と層別したときのデータ件数と の関係で、完全に等しい比率にできない場合もあ り得ます。)

15.1.17 モデル作成用データとモデル検証用データ

分析に用いることができるデータセットをすべて モデル作成に用いると、モデル予測値の精度を検 証するデータが残らない点で不都合になります。 そこでターゲット別に層別サンプリングを行い、 モデル作成用データセットとモデル検証用データ セットに分け、モデル作成とモデル検証を別々の データセットで行うことが一般に行われています。 本アプリケーションにも層別サンプリングにより モデル作成用データとモデル検証用データを作成 する機能を持っています。

15.1.18 ゲインチャート

予測値の順位がターゲット出現率の順位を反映し ているかどうかを判定するための図。CAP (Cumulative Accuracy Profiles) 曲線とも呼ばれ ます。横軸は予測値の大きい順にオブザベーショ ンを並べたときの件数累積百分率を表し、縦軸は ターゲット捕捉率(再現率)を表します。縦軸、 横軸ともに0から1の値の範囲をとり、座標(0,0) と(1,1)の2つの点を通る曲線を描きます。予測 値の順位がターゲット出現率の順位と完全に一致 している仮想のモデルは完全モデル、または理想 モデルと呼ばれ、そのゲインチャートは座標(0,0) の点と(p,1)(pは全体の平均ターゲット出現率) の点と(1,1)の3つの点を直線で結んだ折れ線で 表示されます。また、座標(0.0)と(1,1)を結ん だ直線(対角線)はランダムな値を予測値とした 場合のゲインチャートを表し、ランダムモデル(ま たはあてずっぽうモデル)と呼ばれます。作成す るモデルのゲインチャートは完全モデルとランダ ムモデルのゲインチャートの中間に位置し、完全 モデルに近いほど良いモデルと判断できます。し かし、もしも作成したモデルが完全モデルに非常 に近い場合は、むしろ、モデル作成過程(特に用 いている説明変数)に問題がある可能性を疑うべ きです。

15.1.19 AR 値

AR (Accuracy Ratio) 値はモデルの精度評価値の1

つです。ゲインチャートにおける完全モデルとラ ンダムモデルに挟まれた領域の面積を分母、作成 したモデルとランダムモデルの間に挟まれた領域 の面積を分子とした比率。作成したモデル予測値 の順位とターゲット出現率の順位との対応度合い を数値で表現したもので0から1の範囲をとりま す。

AR=分子/分母

ただし、分子はモデルのゲインチャートと対角線 に挟まれた領域の面積、分母は完全モデルのゲイ ンチャートと対角線に挟まれた領域の面積です。 この面積は台形の面積を求める式を用いて比較的 簡単に計算することができます。なお、ROC曲線 の下側領域面積(ROC エリア)と AR は以下の関 係があります。

ROC エリア=AR/2+0.5

15.1.20 比較プロット

横軸に予測値、縦軸に実際値をとった散布図のこ と。予測値が実際値に一致する点は図の対角線上 に並びます。ツリーモデルでは終端ノード単位に 散布図の点がプロットされます。ゲインチャート と異なり、予測値の順位ではなく、予測値そのも のと実際値との差異を確認できる点で有益です。

15.1.21 R2 乗値と誤差平均平方の平方根

R2 乗値、誤差平均平方の平方根はいずれも誤差(= 実際値-予測値)の観点から見たモデルの精度評価値。R2 乗値は誤差平方和を分子、実際値の偏差 平方和(偏差とは各実際値から実際値全体の平均 値を差し引いた値のこと)を分母とした比率を 1 から引いた値。誤差が0の場合R2 乗値は1となり ます。誤差が大きいほど小さな値をとりますが、 誤差が大きいとR2 乗値はマイナス値をとる場合 もあり得ます。予測値が実際値とずれているよう な場合、AR値が1であってもR2 乗値は1にはな りません。誤差平均平方の平方根(平均2 乗誤差 の平方根)の値は、推計値の平均的な誤差の大き さをターゲット出現率の尺度で表したものです。

R2 乗 值 =1- 誤 差 平 方 和 / 偏 差 平 方 和 =1-Σ{(y-y_pred)**2}/Σ{(y-y_mean)**2} ただし、y は実績値、y_pred は予測値、y_mean は実績値の平均値、 Σ }は{内の式をオブザベーシ ョンごとに計算し、それらの合計をとる演算記号、 **は累乗演算子です。

15.1.22 正誤表と正答率

正誤表(Confusion Matrix)および正答率

(Accuracy) はターゲット予測出現率の値からタ ーゲットが出現するか否かの2つのクラスの予測 に変換した上で、実際の状態と比較した場合のモ デル精度を評価します。ターゲット予測出現率に あるしきい値を与え、しきい値以上の予測出現率 を持つ対象はターゲット出現、しきい値未満はタ ーゲット非出現とみなした2つのカテゴリを持つ 予測変数に変換した上で、実際の状態(こちらも ターゲット出現もしくはターゲット非出現の2つ のカテゴリを持つ)を表す変数とクロス集計を行 ったものが正誤表です。正誤表の2*2=4個のセルの 内、予測値と実際値が一致している2つのセルが正 しく予測できたセル、その他の2つのセルは誤った 予測を行ったセルを意味します。正答率は予測が 正しかったセルの合計件数を全件数で割った値で す。

なお、ターゲット件数が非常に少ない、例えば100 件中1件のみがターゲットで残り99件は非ターゲ ットである場合、100件すべてを非ターゲットと予 測しても正答率は0.99と計算されます。このよう に、状況によっては、みかけ上非常に正答率が高 いモデルを安易に作ることが出来る場合があるた め、正答率の取り扱いには注意が必要です。

15.1.23 群内平方和と群間平方和

集団のバラツキの大きさを表す統計量。回帰木モ デルのノード分岐条件(AIC 条件およびカテゴリ併 合方法探索)に用いています。親ノードのターゲッ ト変数 Y のバラツキ(変動)の大きさは、Y の集団内 の平均を Ybar とすると、群内修正済平方和 WSS=Σ(Y-Ybar)^2 と表されます。Σ()はデータ件数 n についてすべて足しこむことを表します。WSS をデータ件数で割れば、分散 VAR=WSS/n と呼ば れ、さらに VAR の平方根をとると、標準偏差 SD=sqrt(VAR)と呼ばれます。さて、親ノードが 2 つの子ノードに分かれると、ターゲット変数 Y の 変動は、以下のように表されます。

(親ノードの群内平方和 WSS)=(子ノード 1 の群内

15.1 用語の説明

平方和 WSS1)+(子ノード 2 の群内平方和 WSS2)+(群間平方和 BSS)

そして、2 つの子ノードの群内平方和の合計 (WSS1+WSS2)ができるだけ小さくなる基準で分 割に用いる説明変数を探索します。上の式から、 群内平方和の合計(WSS1+WSS2)を小さすること は、群間平方和BSSを大きくすることに他なりま せん。群間平方和はモデル平方和とも呼ばれ、説 明変数のカテゴリに分けることによって元の集団 にあった Y の大きな変動を吸収します。

15.1.24 ROC 曲線

ROC 曲線(Receiver Operating Characteristic Curv) は医薬や測定機器分野で良く使われる、診断精度 評価図です。これらの分野で用いる場合の ROC 曲 線の用語では、正予測の判定を「陽性」、負予測の 判定を「陰性」と呼びます。判定結果が正しかっ たか間違っていたかによって、真陽性、偽陽性(「擬 陽性」ではありません)、真陰性、偽陰性に分かれ ます。また、ターゲット再現率のことを「感度 (Sensitivity)」、非ターゲット再現率のことを「特異 度(Specificity)」と呼びます。データをモデル予測 値の大きい順にならべておいて、縦軸は「感度」

(=True Positive Rate)、横軸は 1-「特異度」(正誤 表からただちに正予測偽割合(=False Positive rate) に一致することがわかります)をとった点を結ん だ曲線が ROC 曲線です。ゲインチャートの完全モ デルに対応する ROC 曲線は原点(0,0)と左上の点 (0.1)と右上の点(1,1)を結んだ直角の折れ線になり ます。

15.1.25 ROC エリア

ROC エリアは ROC 曲線の下側面積 AUC(Area Under roc Curv)とも呼ばれ、分類木を含む分類モ デルの一般的なモデル精度評価値の 1 つです。 ROC エリアの計算式は単純で、ROC 曲線上で原 点座標(0.0)と ROC 曲線と右下座標(1,0)に囲まれ た部分の面積を計算します。完全モデルの場合 ROC エリア=1、ランダムモデルの場合 ROC エリ ア=0.5 となり、1 に近いほど精度が高いことを意 味します

なお、AR 値と以下の関係式が成立します。

ROC エリア=AR/2+0.5

15.1.26 名義尺度・順序尺度・循環尺度

名義尺度・順序尺度・循環尺度は一般に文字タイ プの変数の尺度の分類です。文字変数の値(カテ ゴリ)に順序関係(特定のカテゴリ同士が隣接す るという関係)が全く無いとみなす場合、その文 字変数は名義尺度と呼ばれ、特定の2つのカテゴ リ同士が隣接しあって全カテゴリが決まった順番 に並ぶとみなす場合には順序尺度と呼ばれ、さら に順序尺度の最初のカテゴリと最後のカテゴリが 相互に隣接していると仮定する場合は循環尺度と 呼ばれます。これらの尺度は分析者によって自由 に決めることができるものです。例えば、 "A","B","C"という3つの値を持つ文字変数は分析 のときに名義尺度、順序尺度、循環尺度いずれに も取扱えます。

一方、数値タイプの変数の場合は、とびとびの値 をとるのでなければ、間隔尺度(差の大きさに意 味がある尺度。例えば速度)もしくは比尺度(正 の値をとり、倍数に意味がある場合の尺度。例え ば身長や体重)となります。しかしながら、ツリ ーモデルに用いる場合は、数値タイプ変数は変動 範囲の中のある値を境としてカテゴライズが行わ れるため、間隔尺度あるいは比尺度の性質は失わ れ、カテゴリ間の順序関係だけが残されて、順序 尺度もしくは循環尺度の取扱いになります。なお、 数値タイプの説明変数をカテゴライズした後に名 義尺度として取扱うことも考えられます。しかし ながら、そのような取扱いが必要なのは、一般に 連続変数ではなく、離散的な値をとる数値変数の ではないかと推察します。もしもそうであれば、 数値変数ではなく、文字変数として入力すること によって実現可能なので、DMT_TREE では数値タ イプ説明変数を名義尺度として取扱うことはでき ないようにしています。

15.1.27 線形回帰モデル

数値変数の予測や数値変数の変動要因の分析を行 う代表的な統計モデル。以下の式で表現されます。

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

ただし、yはターゲット変数、 $x_1, x_2 \dots x_k$ は説 明変数、 $\beta_0, \beta_1, \beta_2 \dots \beta_k$ は未知の係数 (パラメ ータ)、 ε は誤差項で、平均0分散一定の正規分布 を仮定します。 ここで、 β_0 は特に切片項(定数項とも)と呼ばれ、 全説明変数値=0のときのターゲット変数の期待値 を表します。もしも全ての説明変数が原点0を持つ 比例尺度変数であり、すべての説明変数値=0のと きターゲット変数値も0になるべきと考えられる 場合は、切片項=0(切片項なし)という制約を与 えるべきです。

文字タイプ説明変数は各値ごとにダミー変数(該 当すれば1,非該当の場合0の値をとる2値変数)に 変換された上で上式の説明変数に加えられます。

パラメータ推計値は誤差 *E*の2乗和が最小になる 基準で決定されます(最小2乗法)

線形回帰モデルの予測値 \hat{y} は以下の式で与えられます。

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

15.1.28 線形ロジスティックモデル

ターゲット値の出現確率の予測やターゲット値の 出現確率に影響を与える要因分析を行う代表的な 統計モデル。以下の式で表現されます。

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

ただし、 $x_1, x_2 \dots x_k$ は説明変数、

 $\beta_0, \beta_1, \beta_2 \dots \beta_k$ は未知の係数(パラメータ)、 \hat{p} はパラメータ $\beta_0, \beta_1, \beta_2 \dots \beta_k$ のセットと説 明変数 $x_1, x_2 \dots x_k$ のセットが与えられた場合の ターゲット予測出現率を表します。

なお、 $Z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ とおいて、上式を \hat{p} について解くと、

$$\hat{p} = \frac{\exp(Z)}{1 + \exp(Z)}$$

と表現できます。(予測式)

さて、パラメータ $\beta_0, \beta_1, \beta_2 \dots \beta_k$ の仮説下で実際にターゲット値が出現したオブザベーションは説明変数 $x_1, x_2 \dots x_k$ に対するターゲット予測出現率 \hat{p} の確率、ターゲット非出現のオブザベーションは $(1 - \hat{p})$ の確率で事例が発生すると予測したとみなすことができます。(仮説と事例が関連し

ているほど、この確率は大きな値をとることがわ かります。)

仮説下でのすべてのオブザベーションのターゲット事例の出現確率(同時確率)は、各オブザベーションの出現確率をすべて掛け合わせることによって得られ、**尤度**(*L*)と呼ばれます。

$$L = \prod \{ (\text{target} = 1) * \hat{p} + (\text{target} = 0) * (1 - \hat{p}) \}$$

ただし、target=1 はターゲット出現事例のオブザ ベーション、target=0はターゲット非出現事例のオ ブザベーションを意味します。

パラメータ推計値は、尤度 *L* 最大(対数をとった 対数尤度 ln(*L*) 最大と同等) 基準で決定されます。 (最尤法)

15.1.29 アップリフトモデル

アップリフトモデルはマーケティング分野から発 展したデータマイニングモデルの1つです。

一般に、マーケティング施策を実施すると購入が 増える顧客とそうでない顧客がいると考えられま す。DMに反応して購入金額が増える顧客(A)も いれば、逆にDMに反発して購入を取りやめる顧客 (B)もいるかもしれません。また、放置しておい てもたくさん買ってくれる顧客(C)もいるかもし れませんし、DMを出しても出さなくても全く買う 気が起きない顧客(D)もいるかもしれません。

アップリフトモデルは、売上そのものではなく、 施策実施効果(売上の増加分)が高い/低い顧客 集団を見分けることに関心があり、顧客を上記の (A)から(D)のいずれかに分類し、施策実施先 の最適化に用いるためのモデルです。

モデルの説明変数の統計的有意性を評価する方法 は、さまざまな方法が考えられますが、一つの方 法は以下のとおりです。

(1) 施策実施群のデータセット (data) と対照群の データセット (control) を縦に連結したデータセ ットを作成し分析データとします。

(2) データから、説明変数ごとに以下のモデルを構築し、AとBの交互作用効果の有意性をAICその他の統計量で評価します。

```
モデル:目的変数=Aの主効果+Bの主効果
+AとBの交互作用効果
```

ただし、

Aは当該説明変数、

Bは施策実施群と対照群を識別するダミー変数。

Data Bring New Insight to Your Business 15 付録 15.2 お問合せ先

上記の方法による説明変数ごとのアップリフト効果の推定は、ロジスティック回帰モデル、または 分散共分散分析モデルを用いて比較的簡単に行え ます。しかし、ロジスティック回帰モデルで発生 の可能性のあるエラー(「準完全分離」)を回避す るため、本アプリケーションでは上記と同じ考え 方を独自のアルゴリズムで実現しています。

15.2 お問合せ先

本マニュアルに関するご質問、その他のお問合せ は以下の宛先までお願いします。

データマインテック株式会社 分析ツール開発部マニュアル担当

〒201-0004 東京都狛江市岩戸北 3-3-6-405 info@dataminetech.co.jp

なお、本マニュアルは予告なく改訂される場合が あります。下記のホームページで公開する最新の マニュアルをご参照ください。

http://www.dataminetech.co.jp/

Copyright 2017 Data Mine Tech Ltd. 無断複製・無断転載を禁じます